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Structuring Mobility Transition with An Adaptive
Graph Representation

Tianlong Gu, Minfeng Zhu, Wei Chen, Zhaosong Huang, Ross Maciejewski, Liang Chang

Abstract—Modeling human mobility is a critical task in fields
such as urban planning, ecology, and epidemiology. Given the
current use of mobile phones, there is an abundance of data
that can be used to create models of high reliability. Existing
techniques can reveal the macro-patterns of crowd movement or
analyze the trajectory of a person; however, they typically focus
on geographical characteristics. This paper presents a graph-
based approach for structuring crowd mobility transition over
multiple granularities in the context of social behavior. The
key to our approach is an adaptive data representation, the
adaptive mobility transition graph, that is globally generated
from citywide human mobility data by defining the temporal
trends of human mobility and the interleaved transitions between
different mobility patterns. We describe the design, creation
and manipulation of the adaptive mobility transition graph and
introduce a visual analysis system that supports the multi-faceted
exploration of citywide human mobility patterns.

Index Terms—Timeline, Mobility, Mobility Transition, Mobil-
ity Patterns

I. INTRODUCTION

THE rapid deployment of location-aware devices has made
it easy to collect large amounts of trajectory data from

humans. The abundance of such data is providing new in-
sights across a variety of application domains including urban
planning, transportation management, and epidemiology [10],
[12], [22]. In such domains, developing insights into human
mobility patterns [4] can enable researchers to develop models
of disease spread, traffic patterns, etc., where analysts explore
mobility patterns [34] to identify potential drivers and their
consequences. Given the abundance of trajectory data, a
variety of modeling, analysis and visualization tools have
been developed to explore mobility patterns. Recent work
(e.g., [41], [39]) has focused on developing rules of human
mobility by semantically linking trajectory data to physical
points-of-interest. Previous solutions emphasize visualization
for mobility patterns. The mobility pattern is defined as a
group of trajectories which imply similar behaviors (e.g.,
staying at home, driving). However, little attention has been
given to the transition between mobility patterns. For instance,
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a person stops visiting and takes a meal at the restaurant.
We are interested in analyzing the time and location of
the transition between visiting and eating. One pioneering
work [35] employed a Dynamic Categorical Data View to vi-
sualize state transitions over time. However, this approach only
shows the transition between different locations as opposed to
summarizing overall patterns and trends. As such, new work
is needed to extract and summarize generalizable mobility
patterns. This requires novel methods for both data aggregation
that can match an analyst’s mental model of spatiotemporal
trends (rush hour times versus mid-day traffic or city-center
versus rural commutes) and for visual representations that
can effectively summarize large amounts of trajectories into
a manageable exploratory view.

We propose a novel representation, the adaptive mobility
transition graph (AMTG), to model the temporal evolution
of human mobility patterns of massive crowds. An AMTG
contains not only nodes representing mobility patterns but also
edges representing transitions between crowd behavior. Our
proposed methodology focuses on enabling a flexible/adaptive
partitioning of the data. Where many techniques for trajectory
analysis simply uniformly partition trajectories over time, we
propose segmenting the data in a semantically meaningful way
to better capture human behaviors. The computation of an
AMTG consists of three major stages. First, a trajectory is
partitioned into a series of episodes (stop and move) adaptively
according to human behaviours. Second, the mobility pattern
is constructed by encoding the mobility of a trajectory segment
with feature descriptors and clustering similar segments. Third,
the probability of mobility transitions is estimated by means
of a time-varying dynamic Bayesian network [32].

To support effective analysis of a constructed AMTG,
we have designed and implemented an interactive visual
analysis system that enables a multi-faceted exploration of
the spatiotemporal evolutions and transitions between mobility
patterns. The visual interface employs a parallel coordinates
view and geographical map view to help users comprehend
and compare the difference between patterns. The main view
for the adaptive mobility transition graph shows a high level of
transitions between mobility patterns. With our system, users
are able to quickly browse the summarized information and
investigate human mobility at both the crowd scale and the
person scale, thereby tracing the dynamic evolution of human
mobility patterns. Our contributions include:

• A new scheme that represents and constructs mobility
patterns from raw trajectory data;

• A visual analysis system that supports the exploration of
citywide human mobility patterns.
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II. RELATED WORK

A. Mobility Models

Mobility models aim to simulate human movement behavior
in urban areas, and such models play an important role in mo-
bile network construction and new communication technology
development [34]. Many models assume that the movement is
random. In the Random Walk Mobility Model [7], a person
starts from a position at a given point and moves at a random
distance and angle towards a destination. In the Random
Waypoint Mobility Model [27], persons move from location
to location with random stops in between. In the Smooth Mo-
bility Model, an accelerated velocity is employed to eliminate
sharp trajectory turns and sudden changes of speed [6], and in
the Reference Point Group Mobility Model [37], the mobility
of a simulated trajectory can be randomly influenced by other
neighboring nodes. Given that such randomness often results
in unrealistic patterns, other models have been developed to
try and link features of the built environment to the mobility
patterns. For example, the Scalable Mobility Model [5] adopts
three sub-models, a physical model, a gravity model and a
fluid model, to characterise population distribution, mobility
classes and transition probability. Other works focus on using
a transition matrix to reflect the probability of moving to an
adjacent cell [8], and the Mask Based Mobility Model [16]
divides the simulated environment into square cells where the
probability of moving from one cell to another is modeled by
integrating geographical, topographical and economic data.

B. Mobility Analysis

Lu et al. [22] studied the movement of 1.9 million mo-
bile phone users during an earthquake and found that the
predictability of population movements during a disaster was
higher than previously thought, and Gonzalez’s work con-
firmed that up to 90% of the different mobility networks
could be described using only 17 different motifs [11]. Wang
et al. [38] used individual road segments to trace driver
sources which enables the development of a bipartite network
framework of road usage. Furthermore, a method to cluster
road usage for improving road network efficiency has also
been proposed [36]. Recently, semantic trajectory analysis has
also attracted much attention. Spaccapietra et al. [33] proposed
to transform a trajectory into move and stop segments. In order
to enrich semantic, Yan et al. [40] introduced a semantic model
to integrate stops and moves with geographic knowledge. More
recent work has proposed the semantic analysis of trajectories
for locating billboards [20], transforming trajectories into
documents to support text searches [1], and using topolog-
ical methods to capture spatiotemporal variations within a
city [25].

C. Trajectory Clustering

Clustering analysis is one of the general approaches to
studying large datasets since it allows the analyst to focus
on a higher level representation of the data [2]. Methods for
clustering trajectories aim to group similar trajectories having
similar attributes. As Kisilevich et al. [18] gave a survey about

clustering methods on trajectory data, we briefly review the
most relevant methods here.

Density-based methods use a threshold for each object to
overcome issues with noisy data [30]. The OPTICS method [3]
created a cluster-ordering which represents its density-based
clustering structure. Lee et al. [19] proposed the TRACLUS al-
gorithm. This method first partitions a trajectory into segments
and then groups similar segments into a cluster. Distance-based
clustering methods first transform trajectories into feature
vectors. Each feature represents single characteristic of the
original object (e.g., direction). Then feature vectors are
grouped using generic clustering algorithms (e.g., K-means).
Sometimes, distance functions are defined on features, such as
direction or speed, for classifying trajectories [28].

D. Visualization of Mobility Transitions
One common means of exploring mobility data is through

visualization, and a large body of visualization research has
focused on the evolution of patterns and flow of spatiotem-
poral information. For example, stacked graph representation
schemes [15] and Sankey diagrams [29] have been widely
used to describe the evolution of categorical data over time.
However, these techniques tend to ignore how information
evolves and transitions. While many visualization methods
have focused on the flow of text, other recent work has focused
on urban computing and spatiotemporal distribution charac-
teristics of trajectories. VATT [9] and MovementSlicer [14]
employed a storyline-based approach to visualize the evolution
of each person. However, these approaches only support a
small number of persons. Landesberger et al. [35] designed
the Dynamic Categorical Data View to support the visual
exploration of categorical (e.g., location) changes of large
numbers of persons. However, this work consider the changes
between two time points. They ignore the changes along two
consecutive time points. Our approach focuses on constructing
mobility patterns from trajectory data and visually analyzing
continuous transitions over time.

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
R A raw trajectory
ri Trajectory points
Rsegi The i-th segment of trajectory R
τ Time threshold
δ Distance threshold
Fi The feature vector of trajectory segment Rsegi
MP The set of mobility patterns
mi The mobility vectors of trajectory segment Rsegi
G = (V,E) A directed graph representation of AMTG
V

ti
j A node of mobility pattern MPj at ti
V ti A set of nodes at ti
Ati A transition matrix Ati between V ti and V ti+1

M Trajectory data
ml

i The mobility vector of the i-th segment of person l
T Time points of trajectory segments
tli The end time of the i-th segment of person l

III. METHOD

In order to better understand spatiotemporal data, we need
to extract stops and moves which imply human behaviors.
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Stops are the places people stay for long periods, while moves
are routes between different places. It is valuable to study
the transition between human behaviors to discover patterns
and gain insight into human mobility. Analyzing how people
transfer between different behaviors or locations gives us an
overview of the lifestyle of a city.

The mobile trajectory data employed in our study is
provided by a mobile phone service company. Our dataset
includes 14 billion records of 7 million mobile users during
the period from January, 2014 to February, 2014. Each record
contains multiple items: a phone ID, a cell tower ID, and a
time stamp. In this section, we introduce our method to extract
mobility patterns and generate their transitions from trajectory
data. For clarity, Table I lists the notations used in this paper.

A. Task Analysis and Design Rationale
Our goal is to characterize human mobility with the assis-

tance of the construction and exploration of transitions among
time-varying human mobility. We aim to summarize mobility
patterns and explore regions with different mobility patterns.
To address the problem, here are the analytical tasks that our
visual analytics interface should support:
T1 Explore the overall mobility transition: The new represen-

tation should provide an overview of sequential transitions
among various mobility patterns. To understand human
movement behavior, interesting transitions need to be
identified and explored.

T2 Explore and evaluate the feature descriptors: We need to
analyze the distribution and examine the effectiveness of
the attributes of trajectories.

T3 Study the specific mobility patterns: There is a need
to enable investigations of mobility patterns and track
dynamic transitions across different mobility patterns.

T4 Query trajectory of specific persons: In addition to the
macroscopic description of crowd mobility, it is desirable
to search persons by their mobility behavior.

To handle T1, the system should provide the overview of a
set of mobility patterns and their transition relationships. The
analysts are interested in transitions that occur with a high
probability and want to explore detailed information about
these transitions through visual interaction. We group similar
trajectory segments from different persons into mobility pat-
terns and generate a transition graph to characterize transitions.

For T2, our goal is to present the distribution of the
feature descriptors extracted from trajectory segments. For
high dimensional data, a scatter plot focuses on revealing
the correlations between dimensions. Dimensionality reduction
techniques generate embeddings in a low-dimensional space
where the axes is not directly correspond to the original
dimensions [21]. Hence, we employ the parallel coordinates
plot to show the distribution of each feature descriptor.

For T3, it is necessary for analysts to explore the mobility
patterns related to specific transitions. Our system allows
the users to click-and-select a mobility pattern. The selected
mobility pattern and the related transitions will be highlighted,
and the analysts can trace the mobility transition over time.

To support T4, we design three query conditions, including
ID, residence locations, and mobility patterns. The trajectories

of selected persons will be shown on the map. Analysts
can query and compare the trajectory of persons in different
regions or with specific behaviors.

B. Overview

Our approach consists of three stages: trajectory segmenta-
tion, mobility pattern construction, and AMTG generation.

Trajectory segmentation: We extract trajectory segments
from a trajectory: a stop is an interesting place where a moving
person stopped for a long period of time for an activity, such
as sleeping, working or shopping. We partition a trajectory
into a series of episodes by detecting stop segments.

Mobility pattern construction: For trajectories of a city-
wide population, it is inefficient to study human mobility
individually. Instead, it is more desirable to encode the
segments with feature descriptors and group similar trajectory
segments from different persons into mobility patterns.

AMTG generation: In this stage, we generate the adaptive
mobility transition graph to characterize the temporal evo-
lutions and interleaved transitions of mobility patterns. The
AMTG takes a directed graph representation where nodes
represent mobility patterns, and a directed edge indicates the
transfer processes between pairs of nodes.

C. Adaptive Trajectory Segmentation

We describe a methodology to detect the stay location from
a trajectory adaptively according to human behaviors. This
segmentation approach is the adaptive portion of the AMTG.

1) Trajectory Data: Our method starts with raw trajectory
records of a moving person. Such data is typically represented
as a sequence of spatiotemporal records r = (x, y, t), yielding:

R = {r1, r2, ..., rl} (1)

move move movestop stop stop

Fig. 1. The trajectory is divided into multiple segments by identifying stop
records. Each grey dot indicates a record of the trajectory. The dotted circles
represent detected stop trajectory segments.

2) Trajectory Segmentation: To characterize the mobility
of a person, the sequence of location records needs to be
classified into intervals that explicitly reflect various behaviors
as shown in Figure 1. The first step is transforming raw
trajectories into stops and moves, which can be used to detect
places, such as residences and offices, where people stay for
long periods. Density-based methods [42] use the fact that
trajectory records of stops must be close to stay regions and
stays should occur for a long period of time. A raw trajectory
R can be denoted as:

R = {Rseg1
,Rseg2

, ...,Rsegn
} (2)

Rsegi
= {ri1 , ri2 , ..., rin}, i = 1, ..., n (3)
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where rij = (xij , yij , tij ), 1 ≤ ij ≤ in. Rsegi
is considered as

a stop trajectory segment when it meets three conditions [42]
given a time threshold τ and a distance threshold δ:

• C1: the time difference between its first and other records
should be larger than τ :

||ti1 − tin || ≥ τ

• C2: the location difference between its first and other
records should be less than δ:

∀1 ≤ j ≤ in, ||(xi1 − xj , yi1 − yj)||2 ≤ δ

• C3: Rsegi
is a maximum subsequence in R:

||(xi1 − xi+11 , yi1 − yi+11)||2 ≥ δ

Our method starts with the first unlabeled record. We
constantly expand the segment by adding the next record if C2
is met. The segment expansion is stopped when C3 will be not
fulfilled. If the segment also meet C1, we label all records of
this segment as stop records. If not, we label the first unlabeled
record as a move record. This process is repeated until all
records have been assigned with a label. We can segment the
trajectory according to their label. We refer each trajectory
segment to move or stop with two time stamps, tstart and
tend, yielding a sequence of move or stop trajectories.

3) Parameter Selection: Selecting an appropriate value of
τ and δ is not easy. A high time threshold will lead to the
discovery of places where a person stayed for a long period
of time, such as home or work. However, a small value for the
time threshold allows analysts to identify more places where
a person stayed for a few minutes, such as a bus stop or train
station. In our dataset, the average time duration between two
consecutive records is 68 minutes. 76.16% of the time duration
is less than 30 minutes Hence, we consider 60 minutes to be
a suitable time threshold.

Stay behaviour may occur in two cases. If a person remains
stationary for a time period, the positions keep being recorded
when this person stays at office or home. In other cases, people
walk around within a certain spatial region, for example, when
people exercise or go to the park or market. The average
distance between base stations is 0.539km, with 86.96% of the
base station distance being less than 1km apart. The average
distances between two consecutive records is 0.881km, and
75.17% of the recorded distances are less than 1km. Thus, we
set δ to 1000 meters to detect stop records. In our experiments,
if a person spent more than 60 minutes where all location
references are within a distance of 1000 meters from each
other, the trajectory segment is defined as a stop.

D. Mobility Pattern Construction

We describe how to construct mobility patterns by clustering
trajectory segments based on extracted relevant feature vectors.

1) Mobility Features: To capture features of human mo-
bility previous solutions typically cluster trajectories that
share similar characteristics such as speed and direction
or solutions that attempt to identify a group of persons
who move together [24]. We focus on choosing features
which describe the behavior of trajectories and are able to

separate different mobility patterns. We consider two kinds
of feature descriptors: entropy for time series data and well-
established geographic information. Entropy is one of the
most fundamental quantities for describing the degree of
predictability when characterizing a time series [26]. We adopt
entropy as proposed in [31], which shows a 93% potential
predictability in human mobility, and extend this work to
temporal-correlations. The radius of gyration interprets the
distance travelled by a user [12] which is used to separate
mobile phone users into several groups. In order to capture the
transition of different mobility patterns in different places, we
use geographic centroids to describe the location of trajectory
segments. For example, it is possible that a person who lives in
suburban areas goes to work downtown by the subway. Thus,
we also compute geographic features, such as the radius of
gyration, centroid location, speed, etc. Then we can analyze
the movement of the workplace and sightseeing of the city.
We compute 8 feature descriptors that form a vector Fi from
a given trajectory segment Rsegi

:
• Temporal-uncorrelated Entropy Song et al. [31] pro-

posed a set of entropy-based measures to model human
mobility. The temporal-uncorrelated entropy describes the
probability of being observed at different places. We
adopt the temporal-uncorrelated entropy because of its
capability of distinguishing different movements:

Sunc = −
N∑

k=1

P (k)log2P (k), P (k) ∝
in∑

j=i1

Ik(rj)

where N is the number of places visited and P (k)
denotes the probability of a person visiting place k,

P (k) =
in∑

j=i1

Ik(rj)/
∑
k

in∑
j=i1

Ik(rj). Ik is an indicator

function, where Ik(rj) = 1, if rj belongs to place k,
else Ik(rj) = 0.

• Temporal-correlated Entropy We extend Sunc to the
case of temporal correlation. A person is more likely to
return to place k if the person stayed for a long time.

Stc = −
N∑

k=1

P (k)log2P (k)

P (k) ∝
in∑

j=i1

Ik(rij )(tj+1 − tj−1)/2

• Centroid Location is the geographic centroid (the lon-
gitude and the latitude) of the trajectory segment:

CL =
1

in − i1 + 1

in∑
j=i1

rj

• Radius of Gyration describes the range in which a
person tends to move around [12]. The radius of gyration
is defined as:

rg =

√√√√ 1

in − i1 + 1

in∑
j=i1

‖rj −CL‖2

where CL is the centroid location defined above.



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 5

• Residence Location is the expected residential location.
The residential location is measured from the full tra-
jectory instead of the trajectory segments. The candidate
residential locations are extracted based on records from
00:00 a.m. to 6:00 a.m.

RL =

in∑
j=i1

rjP (j), P (j) ∝ tj+1 − tj−1

• Activity Radius ra is the average distance to a person’s
residence location:

ra =
1

in − i1 + 1

in∑
j=i1

dis(rij , RL)

where dis(x, y) is the Euclidean distance.
• Average Speed savg is defined as the average speed of

the trajectory segment.
• Activity Distance d denotes the length of the trajectory.
• Time Duration TD is the time difference between the

first and last records of Rsegi
.

For each move or stop trajectory segment Rsegi
, different

features are relevant to characterizing move and stop segments.
Since time duration and distance from residence are important
to stop segments and path line attributes (entropy, radius of
gyration, speed, etc.) are meaningful to move segments, we
select different feature descriptors to construct the feature
vectors Fmove

i for move and Fstop
i for stop.

Fmove
i = (Sunc, Stc,CLx,CLy, rg, ra, savg, d) (4)

Fstop
i = (CLx,CLy, ra, TD) (5)

Consequently, a raw trajectory R = {Rseg1
,Rseg2

, ...,Rsegn
}

is represented by a set of feature vectors:

F = {F1,F2, ...,Fn}. (6)

2) Mobility Patterns: For trajectories of a citywide pop-
ulation, it is inefficient to study human mobility patterns
individually. Instead, it is more desirable to group similar
trajectory segments from different persons such that the
spatiotemporal granularity of mobility can be fairly preserved.
In addition, the mobility of a trajectory could be represented
with an array of features that is derived with respect to the
movement and geographical context.

These considerations require a medium-scale perspective
to characterize the mobility behavior. As such, we define a
mobility pattern as the set of feature vectors (Eq.6) of a group
of trajectory segments that are from different persons and share
similar mobility behaviors. Thus, a mobility pattern represents
the mobility behavior of a group of persons in terms of their
contextual geographical, social and lifestyle information.

Given a collection of trajectory segments, a set of mobility
patterns can be computed by normalizing the value of feature
vectors into the range [0, 1] for each dimension and clustering
trajectory segments according to their feature vectors. Since
we select different feature descriptors for different trajectory
segment types, we employ the standard K-means clustering
algorithm to cluster move (Fmove

i ) and stop (F stop
i ) separately

into K classes where centers are denoted as {FCk}, 1 ≤ k ≤

K. We construct Kmove (Kstop) mobility patterns from move
(stop) segments, where K = Kmove+Kstop. Then, we denote
the feature vectors of each center FCk as the mobility pattern
of the kth cluster: MPi, 1 ≤ i ≤ K.

3) Parameter Selection: Picking an appropriate number
of clusters remains an open problem, even in the case of
traditional k-means. Different values of K reveal human
mobility transitions at different granularities. If k is too large,
there will be many invalid clusters with fewer members and an
increased computational cost. If K is too small, the mobility
patterns represented in the clusters will be too general and
provide less generalizable insights. Our empirical experiments
indicate that the best value of K ranges from 10 to 50. In our
case study, we use K = 20 (Kmove = 10, Kstop = 10).

4) Mobility Vectors: To better characterize the transitions
among mobility patterns, we compute the proximity of each
trajectory segment to each of its Kc nearest cluster centers
and represent all proximities with a soft vector quantization
technique [17]. The proximity between each trajectory seg-
ment and one cluster center is regarded as the similarity of
each trajectory segment to the cluster center. Here, Kc is an
empirical parameter and is set to be 4 in our experiments.
Each trajectory segment is assigned to a mobility vector
mmove

i ∈ RKmove

or mstop
i ∈ RKstop

with Kc nonzeros
according to the segment type by

mi(j) ∝ f(Fi), f(x) = exp {−
‖x− FCj‖2

2w2
} (7)

where ‖x − FCj‖2 is the Euclidean distance between x and
FCj , f(x) is a Gaussian weighting function for the purposes
of smoothing, and w is the width of the Gaussian kernel.

To give a general representation of the mobility vector
mentioned above, we extend mmove

i and mstop
i to be a

K dimensional vector mi where the 1st to the Kmoveth
elements represent mobility patterns with move trajectory
segments and Kmove+1th to Kth(=Kmove+Kstop) elements
encode mobility patterns with stop trajectory segments. Then,
a trajectory segment is represented as an array of mobility
vectors mi ∈ RK , of which the jth element indicates the
probability of the segment belonging to the mobility pattern
MPj. A mobility vector mi is constructed by concatenating
Kstop (Kmove) zeros to mmove

i (mstop
i ):

mi =

{
(mmove

i , 0, ..., 0), Rsegi
∈ move

(0, ..., 0,mstop
i ), Rsegi

∈ stop
(8)

For each trajectory segment Rsegi
, we construct a feature

vector Fi for Rsegi
, and represent each feature vector by a

mobility vector mi. A raw trajectory is represented by a set
of mobility vectors: M = {m1,m2, ...,mn}.

E. Generating the Graph

Our main contribution is the adaptive mobility transi-
tion graph (AMTG), a time-varying visual representation
for characterizing the temporal evolutions and interleaved
transitions of clustered trajectory segments and associated
mobility patterns. The AMTG is built upon a collection of
trajectory segments and their associated mobility patterns.
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The AMTG takes a directed graph representation
G = (V,E) where V is a combination of a sequence
of time-stamped node sets, V = {V t1 , V t2 , ...}, and
V ti = {V ti

1 , V
ti
2 , ..., V

ti
K }, and K denotes the number

of mobility patterns. Each node V ti
j denotes a group of

trajectory segments at ti which share a mobility pattern and
contains four components: the time stamp ti, the trajectory
segments, the associated persons, and the associated mobility
pattern MPti

j .A directed edge in E indicates the transfer
processes between pairs of nodes, and the weight of each
edge encodes the transition probability. The transitions are
only considered between two consecutive node sets V ti

to V ti+1 . The transition probability denotes the matching
ratio of trajectory segments in two nodes in two consecutive
frames. The set of transition probabilities between V ti and
V ti+1 can be computed by calculating a transition matrix Ati .
Each element of Ati , namely, atip,q , represents the transition
probability of segments in V ti

q to those in V ti+1
p . An AMTG

is then constructed through a time-varying linear dynamic
system [23] in which edges (transitions) and associated
transition probabilities change temporally. This is basically
a timeline-graph representation. Two sequential stages are
required: computing the node set V and the edge set E.

...

...

ap,q
ti

Vq
  ti

V
  ti

V
  ti+1

V
  ti+2

Vp
  ti

A
  ti

A
  ti+1

Fig. 2. The conceptual overview of an AMTG.

1) Computing The Node Set V: Suppose that all trajectory
segments are categorized into Km classes of mobility patterns.
Because the sequence of trajectory segments of one person
are time-varying and nonuniform, two sequences of trajectory
segments of two unique persons will not necessarily be aligned
along the timeline. Our solution for that is to uniformly re-
sample all sequences of trajectory segments along the timeline,
e.g., every two hours. This scheme reformulates the sequence
set into a time-stamped sequence of mobility patterns, where
each frame refers to V ti . In this way, V ti

j consists of all
trajectory segments whose time durations include ti and whose
feature vectors belong to the mobility pattern MPj. Its size
is: size(V ti

j ) =
∑
k

I
V

ti
j
(Fk), where I

V
ti
j
(Fk) is an indicator

function and Fk is the feature vector of a trajectory segment.
Suppose that the trajectory segment Fk starts at tstart and
ends at tend, I

V
ti
j
(Fk) = 1 if tstart ≤ ti ≤ tend and Fk

belongs to MPj, otherwise I
V

ti
j
(Fk) = 0.

2) Computing The Edge Set E: Directed graphical models,
such as Bayesian networks, are a promising tool for analyzing
transition patterns [32]. Here, an edge set is the popular
transitions recurring across many trajectories. The edge set

has two properties, it is sparse and time-varying [17]. The
transition graph is difficult to understand due to a large amount
of transitions. It is necessary to filter weak transitions (noisy)
and focus on common transitions instead of distal networks.
Hence, the edge set should be sparse. The estimation of edge
weights may suffer from sparse data (limited transitions occur
at a time point t). To overcome the statistical problem of
sample scarcity, we utilize the data near t to compute the edge
set by re-weighting the transition according to the distance to
t. Thus, the weights of the edge set vary smoothly across
time and are robust with respect to the time step which
we choose to estimate the transition. Bayesian networks are
especially suited for learning in such sparse and time-varying
structures. Therefore, we adopt a Bayesian networks approach
to represent the mobility transitions. E is computed in two
parts:

• The first part is a set of mobility vectors, denoted by M =
{M1, · · · ,ML}, where L is the count of all persons.
Each element Ml = {ml

1, · · · ,ml
ln
} is a sequence of

mobility vector, and ml
i denotes the computed mobility

vector described in Section III-D4.
• The second part is a set of time points which denotes

the end time of every trajectory segment. It is denoted
by T = {T1, · · · ,TL}, where L is the person count.
Each Tl = {tl1, · · · , tlln} denotes a set of sequential time
points which are derived from the time stamps of the
trajectory segments of the lth person (Eq.2). In other
words, tl1, ..., t

l
ln

is exactly the end time point of Ml.
Because trajectory segments are not temporally uniform,
Tl is adaptively distributed along the timeline.

The edge set E represents the transition of mobility patterns.
Theoretically, we can estimate the transition matrix At ∈ E
at arbitrary time points by means of the maximum likelihood
method. By assuming that the mobility patterns of each
frame are independent from each other, we can model the
time-varying mobility dynamics as a time-varying dynamic
Bayesian network [32]. We choose to compute E every 2 hours
to achieve a segment-by-segment transition at that time point
because all trajectory segments are not temporally aligned. The
k-th (k = 1) order Gaussian Markovian process is employed:

ml
i+1 = Atiml

i + ε, ε ∼ N(0, σ2I), (9)

where ε is a Gaussian noise function, and Ati is a K × K
matrix which is time-dependent and changes smoothly and
continuously. The dynamic matrix set {At, t ∈ [0, T ]} is used
to describe the transition graph. For a given t, the transitions
between trajectory segments have a varying influence on At,
and consequently we re-weight the transitions according to the
gap between tli and t (see Fig.2). We assume that the weight
follows a Gaussian distribution:

wt
l (i) =

ph(t− tli)∑L
l=1

∑ln−1
i=1 ph(t− tli)

, ph(µ) =
1√
2πh

exp{−µ
2

2h2
}

(10)
where wt

l (i) is the weight of the transition from ml
i to ml

i+1 at
t. If tli is close to t, it means that this transition is more reliable
for estimating the transition matrix at t. h is the variation of
a Gaussian distribution and is used to control the weight of a
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(a) (b)

(c)

(d)

(e)

Fig. 3. The mobility patterns extracted from the trajectories of 141,048 persons over 7 days (Jan.21 - Jan.27, 2014). (a) A map view shows the geographical
trajectories. (b) The statistical view shows the histogram of each component of the mobility feature. The gray polyline encodes the average mobility features
of the selected person. (c) The colored matrix view depicts the feature descriptors of the clustered mobility patterns. (d) An adaptive mobility transition graph
is shown with a stacked flow view that illustrates the transitions among time-varying mobility pattern clusters in which each rectangle (a node) encodes
a cluster of trajectory segments that exhibit the same mobility pattern at the given time point. The arrow curves in grey between two nodes represent the
mobility transition. In this example, the linked curves (in orange) highlight the time-varying mobility of the queried person. (e) The query panel enables users
to search for mobility patterns with a given transition probability of specific persons.

trajectory segment. For the sake of efficiency, we estimate At

line by line. Finally, we can solve Eq.9 by optimizing a least
squares problem with `1-norm regularization:

Ât
d = argmin{

L∑
l=1

ln−1∑
i=1

wt
l (i)(m

l
i+1,d −At

dm
l
i) + λ‖At

d‖1},

where d is the dth row of Ât
d and λ is a parameter that controls

the sparsity of transition matrix. This not only avoids over-
fitting, but also simplifies the resultant graph.

3) Visualizing The AMTG: As previously stated, the AMTG
is a hybrid timeline-graph representation that characterizes
the interconnected mobility transitions in a sequential way.
Transition matrices at close time points are very similar
because the transition matrix shows the mobility transition
over a long time period under the time-varying property
described in Section III-E2.

To emphasize the temporal transitions, we calculate the
mobility pattern every two hours (e.g., 0:00, 2:00, 4:00,...)
since mobility patterns can be very similar in consecutive
time points. We estimate a transition matrix at the center of
two time points (e.g., 1:00, 3:00, 5:00,...). Since we re-weight
the transitions by a Gaussian distribution, we choose the
bandwidth parameter h such that the weighting decay is exp(1)
for half of a time step. To show more detail, we also calculate
the mobility pattern every hour and estimate transition matrices
every hour (e.g., 0:30, 1:30, 2:00,...). We employ an activity-
based globally representative time selection [35] method to

filter interested time moments. The importance of a time
period is defined as the ratio of the number of mobility pattern
transitions to the number of persons.

Our AMTG visualization is similar to Sankey diagrams [29].
We pack the nodes of every Vti vertically as a stacked
diagram. Each node V ti

k ∈ Vti represents its corresponding
mobility pattern at time point ti and is visually encoded with a
filled rectangle. The height of the rectangle encodes the count
of trajectory segments belonging to the mobility pattern. The
color of the rectangle encodes the trajectory segment type: red
for stop segments and green for move segments. The nodes can
be further classified into two layers according to the trajectory
segment type (Fig.3 (d)): a move layer and a stop layer.

The set of Vti is sequentially placed from left to right,
explicitly representing the transition of mobility patterns over
time. The transition between two consecutive Vti

q and V
ti+1
p

is connected by arrow curves. Its color encodes the transition
probability atip,q ∈ Ati from Vti

q to V
ti+1
p .

IV. VISUAL ANALYSIS

A. The Visual Interface

We design and implement a visual exploration system which
consists of a set of linked juxtaposed views. Figure 3 shows an
overview of our interface including a map view (Fig.3(a)), a
statistics view (Fig.3(b)), a matrix view (Fig.3(c)), an AMTG
view (Fig.3(d)) and a query panel (Fig.3(e)).
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1) The Map View: The map view (Fig.3(a)) shows the
geographical information using an OpenStreetMap overlay.
The transition of mobility patterns is inherently spatially and
temporally correlated. The trajectory of a person or a group
of persons is shown as colored curves on the map. The map
view applies consistent visual encoding to the nodes in the
AMTG view. Each stop trajectory segment is encoded with
a red circle whose gradient encodes the time duration. Each
move trajectory is represented as a green curve. To avoid heavy
visual clutter, the top-10 trajectory segments whose feature
descriptors are the closest to the cluster centroid of a mobility
pattern can be shown (Fig.4(a,b)). The trajectory segments of
a person can also be displayed (Fig.4(c)). A home glyph is
used to show the house location. In addition, we employ a
convex hull in grey to provide an overview of the trajectory.

（a） （b） （c）

Fig. 4. In the map view, each move trajectory segment is encoded as a green
curve. A red circle is used to encode a stop trajectory segment. The coverage of
the trajectory segments is represented with a convex hull in grey. (a) The top-
10 trajectory segments of a node contain a large amount of move trajectories.
(b) The top-10 trajectory segments of a node contain a large amount of stop
trajectories. (c) The trajectory of a person.

2) The Statistics View: In the statistics view (Fig.3(b)), a
vertical bar chart with grey bins encodes the demographic
distribution of each component of the feature vector F. The
gradient of each bar denotes the value of the corresponding
feature. The width of the bars indicate the value ranges of
feature descriptors that belong to the pattern. A gray polyline
among the binned charts encodes the average mobility features
of the selected person.

3) The Matrix View: A matrix view (Fig.3(c)) is employed
to show the dimensions of each mobility pattern row by row.
The color of each cell encodes the average value of each
component of its associated feature descriptor. Analysts are
able to select a row to study a specific mobility pattern and
inspect the corresponding trajectory segments in the map view,
the histogram of each component in the statistics view, and the
related mobility transition in the AMTG view.

4) The AMTG View: The AMTG view (Fig.3(d)) shows an
AMTG with the information of each time point. Because the
time range of the data is much longer than the view width,
analysts can pan the AMTG view to choose time interval for
inspection. There are three types of links between nodes:

• The edges are represented with curved arrows. Its color
encodes the directional transition probability between two
time frames. If all edges are shown for an AMTG, heavy
visual clutter appears. Analysts can adjust the filtering
conditions of the transition probability, e.g., filtering out
the probabilities that are out of [0.6, 0.8], yielding a clear
visualization of the AMTG that shows edges with strong
transition probabilities.

• The correspondence of a specific mobility pattern along
the timeline can be represented with a band in grey.
This is useful to trace the places of a mobility pattern
in different time frames.

• Each trajectory segment is labeled with a mobility pattern
(i.e., a node in the AMTG). Thus, the sequence of
trajectory segments can be traced as a path in grey that
links nodes along the timeline (see Fig.3(d)). The path
of selected person will be highlighted in orange.

5) The Query Panel: The query panel (Fig.3(e)) supports
querying a group of persons by specifying the person id. The
trajectory of retrieved persons are shown on other views.

B. Interactive Analysis
The interface offers various possibilities for visually ex-

ploring and analyzing the mobility patterns from multiple
perspectives. Representative scenarios include:

Explore the mobility transition The analysts can select a
node in the AMTG view. The map view and the statistics view
show the trajectory and the feature distribution of the selected
node. The analysts are able to trace the mobility transition over
time by sliding the time bar. Also, when a mobility pattern is
chosen in the matrix view, the mobility pattern and the related
transitions (edges) will be highlighted.

Explore the mobility of a group of persons A group of
persons selected through the querying operations. Our system
supports three operations: 1) Querying a person by searching
the phone ID encoded in the mobile phone database; 2)
Selecting persons whose residences are within the given region
created by dragging a rectangle in the map view, and; 3) The
analysts can select multiple nodes in the AMTG view. The
persons whose paths touch these nodes will be shown. The
analysts can select one person and study its mobility pattern.

Explore the feature descriptors The statistics view en-
codes the demographic distribution of all the feature descrip-
tors by default. When a mobility pattern in the matrix view
or a node is selected in the AMTG view, the statistics view
represents the distribution of the feature descriptors of the
corresponding trajectory segments. When the analysts select
one person in the query view, the statistics view shows the
average values of all mobility features with a connected
polyline among the binned charts (Fig.3(b)).

V. CASE STUDIES

In our study, we chose the trajectory data from Jan. 21,
2014 to Jan. 27, 2014 of 141,048 mobile users, from which
20 mobility patterns are extracted. We conduct two case
studies with the help of an expert (a citizen) of the city.
We perform trajectory segmentation, feature extraction, and
clustering using Java on a PC equipped with a 3.4 GHz Intel
Core i7-4770 CPU and 32 GB main memory. Segmentation,
feature extraction and clustering take approximately 3 hours.
We use a MATLAB toolbox named CVX [13] to estimate the
transition matrix in 30 minutes. To support the comprehensive
study of mobility behavior, the input of our visualization
system includes the raw trajectory data, the adaptive trajectory
segments of each person, the constructed mobility patterns,
and the constructed AMTG. The total size of data is 38.4 GB.
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Pattern 2

Pattern 10

Pattern 2

Pattern 13

Pattern 9

 Pattern 12Pattern 7

Pattern 10

(a)

(b) (c)

Fig. 5. Studying different mobility patterns with our approach. (a) Three groups of mobility patterns exhibit strong mutual transitions in the AMTG visualization.
(b) The transitions between Pattern 2 and Pattern 10. (c) The statistics views of Pattern 2 and Pattern 10.

A. Case 1: Exploring Regions with Different Mobility Patterns

The first case study is designed to explore the mobility
patterns and their transitions (Task 1 and Task 2). Based on
the AMTG view, we find that the transitions take place among
some mobility patterns frequently (Fig.5(a)). By filtering the
transition probability to be in [0.4,1.0], we find three pairs of
mobility patterns that exhibit strong mutual transitions: Pattern
9 and Pattern 12, Pattern 2 and Pattern 10, and Pattern 7 and
Pattern 13 (Fig.5(a)).

We focus on the pair of Pattern 2 and Pattern 10 for
detailed analysis. In the AMTG view (Fig.5(b)), Pattern 10
lies in the stop layer, while Pattern 2 belongs to the move
layer. The transition from Pattern 2 to Pattern 10 indicates a
sharp transition in terms of moving degree (dotted rectangle
in Fig.5(b)). From the map view, we can find that the centroid
locations of both patterns are close. This observation is further
confirmed by the statistical view (Task 1): the dimensions
CL(centroid location) of both patterns are similar (dotted
rectangle in Fig.5(c)). In addition, the values of Sunc, Stc,
savg , ma, ra of Pattern 2 have very low values. A low activity
radius and a long time duration of Pattern 10 indicates a lot of
people living nearby. The reason for the frequent transitions
between Pattern 2 and Pattern 10 is probably that the centroid
locations of both patterns are crowded, and their trajectory
segments are a mixture of both moving and stationary patterns.
By carefully checking the locations, our expert observes that
the centroid locations of Pattern 2 and Pattern 10 are in
a high-technology developing region, which contains many
villages, gardens and office buildings. Persons in the region

may commute between their apartments, offices and gardens.
Analyzing the mobility patterns relies on the geographical

and temporal context. For instance, the centroid locations of
Pattern 7 and Pattern 13 belong to a small town which is
far away from the downtown. Persons in the small town
tend to walk after the dinner because there is little traffic.
Similarly, the centroid locations of Pattern 9 and Pattern
12 are in a crowded area which has many commercial and
cultural facilities. People may come to the area for shopping
and meals, yielding frequent transitions between moving and
stationary mobilities. In the meantime, the thickness of the
stop layer increases progressively with the approaching of
night, indicating the willingness to come back to home. This
observation is consistent with the fact that people typically
leave home for working or studying in the morning.

B. Case 2: Exploring The Mobility Patterns of Island People

To study the living style of the persons on an island of the
city, we select a group of persons whose trajectory segments
belong to the island at night in 7 days. By studying their
trajectory segments on the map view, we find that most of them
frequently visit the downtown of the city and stay there for
several hours (Fig.6(a)). We additionally select several persons
with the help of the query operations provided in the query
view (Task 4) and study their traces individually. Fig.6(b)
shows that the constructed AMTG and the trace (in orange)
of one person. Specifically, the mobility pattern in [4:00 am,
5:00 am] reveals that the person remains stationary (Task 3).
Then the person transits to another mobility pattern in [5:00
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(a)

(b)

(c)

(d)

Fig. 6. A group of persons who live on a small island. Most of them visited the downtown center. (a) The trajectories of five persons in one day. (b) The
AMTG of one person in one day. (c) The mobility transitions of persons on the island and their corresponding residence locations. (d) The mobility transitions
of persons in the downtown and their corresponding residence locations.

am, 6:00 am] (Task 3), which indicates a movement of the
person from the island to the downtown (see the trajectory
segments on the map). From the AMTG visualization, we can
infer that the person stays in a location from 7:00 am to 9:00
am and then traverses to another spot from 9:00 am to 10:00
pm and finally returns to the island at 1:00 pm.

Through the case study, our expert hypothesises that the
residents of the island need to go to the downtown for shopping
because of the deficiency of the consumption goods. In the
meantime, people frequently visit the downtown because they
need to purchase goods for the coming Chinese Lunar New
Year (4 days after 27th Jan), which is the most significant and
long holiday in China.

We further compare the mobility patterns of selected persons
on the island and the ones who live in the downtown over
7 days (Task 3 and Task 4). Two groups of persons are
identified by querying their residence locations in the map
view (Fig.6(c-d)). The traces of the island people along
the timeline transition mainly among four mobility patterns,
which exhibit three movement behaviors: staying in the island,
moving between the island and the downtown, and staying in
the downtown. In contrast, the traces of the downtown people
exhibit varied mobility patterns, and complicated transitions
modes over a short time period.

VI. DISCUSSION AND COMPARISON

In order to demonstrate the strengths of our approach, we
compare the proposed AMTG to the Dynamic Categorical
Data View (DCDV) methodology proposed by van Landes-
berger et al. [35]. The DCDV was designed to visualize
state transitions over time and focuses on showing the transi-
tions between different locations. However, DCDV employs a
sampling method and considers only the transition between
two time points. For instance, Fig.7(a) shows an irregular

mobility pattern transition of a single person. When we apply
sampling methods to visualize such data, we find this person
always belongs to pattern 1 from 10:00 to12:00 pm. We will
lose some information about the activity of pattern 12. To
solve this issue, our scheme is designed to modeling all the
mobility transitions. We perform an experiment to compare
other sampling methods to our scheme. We select a number
of persons who have more than one transitions from 10:00
am to 12:00 pm. Fig.7(a) shows the number of transition
happening between the two time points in a matrix view. We
find that the diagonal of the matrix has a larger value than
others. Fig.7(b) shows that the transition happens between
mobility patterns with move trajectory segments (0-9) and
mobility patterns with stop trajectory segments (10-19). As
such, our proposed scheme can provide higher resolution when
modeling all transitions happening within the time period.

1 12 1Person

(a)

(b) (c)

10:00 am 12:00 pm

Fig. 7. Comparison of sampling method and our scheme. (a) An irregular
mobility pattern transition of a person. (b) The number of transition under
sampling method. (c) The transition matrix estimated by our scheme.
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Furthermore, previous work has focused primarily on using
a uniform temporal segmentation of the data. However, such
a segmentation can miss shifts in patterns and create arbitrary
cut-offs. For example, commuters may go to work primarily
from 8:00 am to 9:00 am, but others may commute from 9:30
am to 10:30 am. Uniform cuts would not group these mobility
patterns as having the same behavior. By developing an
adaptive methodology the proposed AMTG can help overcome
such issues. In Fig.8(b), a person leaves A at 9:30 am, arrives
at B at 11:10 am through C, leaves B at 12:50 pm, and
arrives A at 2:30 pm. If we divide the trajectory into equal
segments: [10:00 am - 12:00 am] and [12:00 am - 2:00 pm],
these two trajectory segments share the same feature vector
and belong to same mobility pattern (Fig.8(c)) resulting in data
loss due to the arbitrary cutoff. However, when we divide the
trajectory into stops and moves using the adaptive scheme, we
are able to identify traffic behaviors between two places from
the AMTG view. As such, the adaptive scheme is more precise
in describing the dynamic mobility pattern than a uniform
scheme and is one of the principle contributions of this work.

A

B

A A

B
C

C

A

CB BC

A

B

(a) (b) (c)

Fig. 8. Comparison of the uniform scheme and the adaptive scheme. A and
C are stop trajectory segments at two places. B indicates the path connecting
A and C. (a) The adaptive scheme (b) Trajectory on the map view (c) The
uniform scheme.

VII. FUTURE WORK

The proposed approach has several limitations. First, we
find it difficult to place more than 50 nodes due to the
limited screen size. Extending the AMTG view to support
more than 50 mobility patterns is also an open area for
future work. An online hierarchical clustering method can
be employed to support interactive exploration of mobility
pattern. Second, the constant time threshold is unsuitable
for the whole domain. We plan to propose a flexible
scheme which takes location and sampling frequency into
consideration. Third, although we slice trajectories into stop
and move segments by identifying stop records, we do not
completely link semantic information into our scheme. As
future work, we plan to enrich stop trajectory segments
with semantic information, such as points-of-interest data
and microblog data, and each move may be annotated with
a transportation label, such as bus, walk, bicycle, etc. The
mobility pattern can be generated by activities instead of
trajectory feature. Such semantic trajectory segments could
facilitate a deeper perspective of trajectory data. In this
sense, the trajectory of a person over the course of a single
day consists of a set of behaviors (e.g., stay at home).

With semantic information, single-day trajectories can be
transformed into a list of temporally non-uniform segments,
i.e., (stop, home,∼ 8am) → (move, car, 8am ∼ 9am) →
(stop, office, 10am ∼ 5pm) → (move, car, 5pm ∼
6pm)→ (stop, home, 6pm ∼).
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