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Exploring the Sensitivity of Choropleths
under Attribute Uncertainty

Zhaosong Huang, Yafeng Lu, Elizabeth A. Mack, Wei Chen, and Ross Maciejewski, Senior Member, IEEE

Abstract—The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit
greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values
incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the
statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute
uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty
specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth
map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute
values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.

Index Terms—geospatial analysis, uncertainty, visualization, choropleth.
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1 INTRODUCTION

THE choropleth map is one of the most common methods of
visualizing spatially referenced data. In creating these maps,

data analysts must choose a classification scheme for binning
the attribute values of data. This is an important aspect of the
analysis because the choice of classification scheme directly
influences the visual design. This is a relatively simple task when
analyzing spatial data but becomes much more complicated in the
presence of uncertain attribute values (e.g., [50], [72]). The issue of
uncertainty becomes even more complex in analyses implementing
multivariate classification (e.g., geodemographic profiling [6], [70]).
Unfortunately, choropleth maps have a limited design space with
respect to the number of visual variables that can be used to convey
information. This has led to a variety of novel visualization designs
for representing uncertainty in geographic data [38], [39]. Previous
work has explored glyphs [63], animation [21], [25], and linked
views [71] as a means of displaying uncertainty.

Given the need for better classification schemes that incorporate
uncertainty in spatial data, a growing body of work has developed
a series of techniques for dealing with this issue [10], [39],
[46], [52], [61]. A large proportion of this work is focused
on improving classification algorithms for choropleth maps in
the presence of attribute uncertainty. For example, Zhang and
Maciejewski [85] developed a scheme for quantifying the visual
impact of classification boundary selection in choropleth maps.
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Using measures of global spatial autocorrelation, they explored
the visual impacts that would result in uncertainty due to the
classification method used (i.e., model uncertainty). However, this
work did not explore the impact of attribute uncertainty.

Despite the amount of attention dedicated to evaluating and vi-
sualizing attribute uncertainty in spatial data, two important aspects
remain underexplored. The first is the movement of observations
between class groups given varied levels of uncertainty. This is
critical to understanding visual changes in classification results.
Second, uncertainty in a multivariate context is underexplored.
The majority of studies evaluate the impact of uncertainty on
classification results in a univariate context [41], [42], [83]. To
address these gaps, we propose a visual analytics methodology to
help analysts and designers explore how the classification of unit
i will change over its range of potential values. This is a critical
step in both map design and spatial analysis. For map design, if
labels shift, the visual appearance of the map can change (whether
intentionally or not) [57]. Thus, the map designer needs to fully
understand the impact that attribute uncertainty may have on their
design scheme. Similarly, analysts need to understand the impact of
uncertainty when exploring spatial autocorrelation and developing
hypotheses about the underlying relationships between variables.
This is particularly important given noted uncertainties in data
sources from social media and wearable devices, as well as the
well-noted sampling error with Census data from the American
Community Survey (ACS) [50], [72].

We have developed a visual analytics system to assist designers
and analysts in identifying the observations and attribute values that
result in the largest visual or statistical changes in choropleth map
design and analysis in the presence of attribute uncertainty. Our
system contains three visualization components. (1) The attribute
uncertainty specification view allows analysts to specify the range
of attribute uncertainty they wish to analyze. (2) A simulation-
based method is applied to generate all possible map classifications
across the range of uncertainty for a given attribute and a fixed
classification method. The associated visualization uses a novel
impact river view for single attribute analysis and an impact matrix
view for multivariate analysis. (3) A dual-map view and a scatter
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plot illustrate changes in classification and spatial autocorrelation.
Our main contributions include:

• A visual representation of regional classification stability
with respect to the underlying data uncertainty;

• A visual analytics methodology for exploring the impact
of attribute uncertainty which integrates the classification
results and spatial autocorrelation, and;

• A simulation-based comparison between classifications
across the range of attribute uncertainty.

By iteratively classifying the map over the ranges of attribute
uncertainty, we are able to identify spatial units where the visual
appearance and spatial clusters of similar observations may be an
artifact of data uncertainty instead of meaningful patterns and
clusters. We demonstrate our proposed methodology via case
studies on geospatial crime data and Census data from the American
Community Survey.

2 RELATED WORK

Our work focuses on quantifying the effect of data uncertainty in
spatial analysis and classification. In this section, we review related
work in classification and geospatial uncertainty and visualization.

2.1 Map Classification
The goal of map classification is to group spatial units with similar
underlying attribute measures. This is challenging as it involves
maintaining within class homogeneity while maximizing class
differences. From this perspective, while more classes may be
preferred to fewer classes, the number of classes is limited by
humans’ ability to interpret subtle changes in color schemes as
well as color limitations in commercial mapping packages [37].

To grapple with these challenges, various classification methods
have been proposed for visualizing data. These techniques range
from unclassified choropleth maps [77] to classic univariate
methods (i.e. quantile, equal interval, and standard deviation
methods [49]) of classification. Over time, more complex univariate
classification algorithms [5], [17], [33] have been developed. For
example, recent work in this area has focused on classification
techniques that account for spatial autocorrelation between
observations [78]. Multivariate map classification, on the other
hand, typically involves classification over several variables using
various data mining techniques, and there are hundreds of clustering
algorithms (e.g., ROCK [28], ST-DBSCAN [8], etc.) that focus on
summarizing large-scale multi-dimensional datasets [7].

For geospatial clustering, k-means [29] is one of the most
popular clustering methods. Polczynski et al. [62] used k-means to
classify geospatial data on a choropleth map with multiple feature
attributes and made a comparison to other common classification
methods. MobilityGraphs [81] also used k-means to reveal the
movement patterns that were occluded in a flow map. Although
clustering algorithms are often used to classify spatial units to
generate choropleth maps, we use “classification” instead of
“clustering” throughout the paper to refer to the process and the
result conveyed by a choropleth.

We use k-means as our default clustering and classification
method. However, it can be easily replaced by other classification
methods (e.g., Jenks natural breaks optimization algorithm [33]
and quantile classification [11] for single attribute classification).
Although the algorithm itself could have some uncertainty in its
output, we focus only on attribute uncertainty in this work.

While classification is the basis for map design, a variety of
visual analytics systems have been developed to further enhance
the exploration of geospatial data. For example, Koua et al. [43]
proposed a self-organizing map method to visualize clusters and
explore geospatial data using a unified distance matrix, projections,
and component planes. Andrienko et al. [2] provided analysts
with an interactive interface for guiding the process of trajectory
clustering in a large dataset. Zhou et al. [86] enabled analysts
to reconstruct subspaces to preserve interesting information.
Clustervision [44] employed a scatter plot for supervised cluster
visualization and comparison. However, these systems do not
focus on how classification and clustering results might vary under
uncertain input conditions. Our visual analytics system supports
the overview, comparison, and exploration of map design when the
underlying attributes have some degree of uncertainty.

2.2 Uncertainty Analysis and Visualization

Given the problems and prospects of uncertainty in traditional
government data and large, unstructured big datasets, several studies
have endeavored to analyze the amount of uncertainty, and the best
strategies for incorporating this uncertainty in analytical results.
These studies build on a history of research proposing strategies for
exploring reliability and uncertainty in spatial data [46], [51], [52],
[61]. For spatial data, we focus on two main types of uncertainty,
positional uncertainty and attribute uncertainty [30], [69].

Positional uncertainty is with respect to the geographic infor-
mation associated with an observation. Tucci and Giordano [79]
define positional accuracy as “the difference between the recorded
location of a feature in a spatial database or in a map, and its
actual location on the ground or its location on a source of known
higher accuracy.” While important, work on classification and
visualization of uncertainty has focused on attribute uncertainty.
In this respect, measurement and sampling error are drivers of
uncertainty [42]. Attribute uncertainty may also arise from varying
the arrangement or spatial aggregation of data which is also known
as the modifiable areal unit problem (MAUP) [24]. Unlike attribute
uncertainty, which can report information about errors associated
with the data, the MAUP remains unresolved [53], and its impact
on statistical results unpredictable [22], [76]. That said, researchers
have begun to design diagnostic techniques for selecting the most
appropriate scale of analysis given the issue of MAUP [59].

The growing body of research on uncertainty may be
grouped into three categories: studies dedicated to visualizing
uncertainty, studies dedicated to incorporating uncertainty into
classification algorithms, and visual analytical techniques for
interactively analyzing uncertainty. In terms of assessing and
visualizing uncertainty, Xiao et al. [83] developed an algorithm
for probabilistically evaluating and visualizing the reliability of
choropleth maps. Sun and Wong [74] proposed several strategies
for visualizing these errors. One proposed strategy is the use of
side-by-side maps, one for the point estimates, and one for the
coefficient of variation to help visualize locations with the largest
margins of error. A second strategy is to incorporate uncertainty
in classification algorithms. Sun and Wong [74] suggested a
modified natural breaks classification algorithm. A third option
is to use interactive visualization tools. For example, Cliburn et
al. [14] proposed a visual analytics system using coupled maps
and confidence interval plots. Sun, Wong, and Kronenfield [75]
designed a map classification algorithm using the class separability
criterion to determine class breaks based on statistically significant
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differences between classes. A drawback of this approach is that it
is susceptible to within-class heterogeneity [82].

Efforts at improving classification algorithms are ongoing.
Chun et al. [42] used a Bhattacharyya distance algorithm for
incorporating uncertainty in choropleth maps based on the class
separability measure designed by Sun, Wong, and Kronenfeld [75].
To address the issue of within-class heterogeneity in the class
separability approach for determining class breaks, Wei and
Grubesic [82] used a Bicriterion Median Clustering Problem-
Uncertainty (BMCP-U) approach to design a choropleth mapping
scheme that incorporates estimates of uncertainty while resolving
the issue of intra-class heterogeneity noted in previous studies [75].
The strength of the BMCP-U is that it does the best job of
minimizing within-class variation while also incorporating spatial
autocorrelation between observations.

Given the well-known issues with uncertainty in geographic
data, a variety of methods have been proposed for uncertainty
visualization [10]. Kinkeldey et al. [39] reviewed and discussed
a series of studies for communicating uncertainty including un-
certainty categories, visualization techniques, application domains,
participants, and tasks. Using various color schemes [1], [58], [66]
or transparency [1], [80] to encode different uncertainty levels is a
common way to compare uncertainty. It has been found that using
transparency is more effective than using color, texture or saturation
in uncertainty representation [20], [46]. Gschwandtner et al. [27]
discussed six different visual encodings, which combined different
shapes, colors, and transparencies, for visualizing uncertainty.
Correll et al. [15] proposed VSUPs which encodes low uncertainty
data with a larger range of visual channel and high uncertainty
data with smaller range to promote easy comparisons between
data and attract more attention during decision making when
uncertainty is high. Besides visualizing uncertainty by visual
encoding, glyph-based [68] and grid-based (e.g., noise annotation
lines [40] and trustree [36]) techniques have proven to be effective
in analyzing and comparing uncertainty of geospatial data. Newman
and Lee [60] used cylinders, cones, and multi-point glyphs to
visualize the uncertainty in a volume visualization scenario.

Kinkeldey et al. [38] also reviewed studies that focus on
the effectiveness of uncertainty visualization to help users make
decisions. The decision tasks [38] include selection [12], [80],
ranking [19], game-like tasks [9], [16], and real-world tasks [67].
Deitrick and Edsall [19] evaluated the influence of data uncertainty
on decision making and users’ confidence when using different
uncertainty visualization methods. Deitrick et al. [18] presented
an implicit approach to visualize the impact that the uncertainty
of climate change will have on policy outcomes in a water model
and urban area. Viard et al. [80] also found the differences between
decision results with and without data uncertainty. Slingsby et
al. [71] designed an interactive visualization strategy for identifying
the attributes of data which drive classification results. They
demonstrated the utility of this strategy with geodemographic
data and discussed the issue of classifying uncertainty. A more
recent innovation in visual analytics is the creation of a tool that
uses a multi-criteria approach for evaluating classification schemes
that considers several criteria: the number of classes, separability,
unevenness, and intra-class variability [73]. The visual analytics
system outlined in this paper differs from previous work in that it
evaluates the movement of observations between classes based on
prespecified levels of uncertainty.

3 THE IMPACT OF DATA UNCERTAINTY ON MAP
DESIGN AND ANALYSIS

In order to explore the impact of attribute uncertainty on a chosen
classification scheme, we propose two metrics for analyzing both
the visual and statistical changes that might occur in a choropleth
map as classification and analyses are performed across a range of
uncertainty. Specifically, we focus on how many spatial units
have changed their class (i.e., color), and how much spatial
autocorrelation changes under the range of uncertainty.

For each spatial unit, we have a set of attributes (e.g., population,
income, etc.) which will be used in the map classification. If we
define an attribute value a at spatial unit i with uncertainty ε ,
the range of values associated with i can be defined as {ai −
ε,ai + ε}. Traditionally, classification is done simply using the
value ai. We propose to use this classification scheme as our base
map. From there, for each spatial unit, we will modify the value
ai over the range of {ai− ε,ai + ε} at a given step size j and
simulate a new classification scheme and evaluate local indicators
of spatial autocorrelation. Thus, if ε = 5 and j = 1, for spatial unit
i, we would have 11 different classifications from ai− 5, ai− 4,
..., ai + 5 where the classification of ai + 0 is considered to be
the base. We then compare each new classification scheme to
the original classification and determine which spatial units (if
any) would see a change in class label.We then use a measure of
information variation to model the distribution of label changes
and also evaluate the local Moran’s I for each simulation.

3.1 Impact on Map Classification

The impact of uncertainty on map classification results are
quantified with two statistics, the count of flipped spatial units and
the variation in information (VI) statistic. These two measures
provide an indication of the number of changes in class labels and
the difference in class labels arising from uncertainty respectively.

Number of Flipped Units: Given a classification method (e.g.,
equal interval, natural breaks, k-means, etc.), each spatial unit i,
will be assigned a class label based on the attribute value (or vector
of values for multivariate classification). As previously stated, for
each spatial unit, we will simulate a classification across the given
range of uncertainty at a step size of j. Thus, if we have a map with
10 spatial units, ε = 5 and j = 1, we will simulate 110 different
classifications as compared to the initial classifier. In each of these
simulations, we calculate the number of spatial units that changed
their class as one measure of the impact of attribute uncertainty.
This measure is one mechanism for assessing the visual change on
the choropleth map. The number of flipped units is calculated as:

N(RA,RB) = ∑u∈S I(RA[u] 6= RB[u]) (1)

where RA denotes the original classification and RB denotes a
simulated result. S is the set of all spatial units, and RX [u] represents
the label of spatial unit u in RX . I(·) is an indicator function.

The critical problem here is to ensure label stability by matching
pairs of class labels between RA and RB. To do this, the class labels
should be designed to minimize the number of class flips. Hu et
al. [31] modeled a similar task as a maximum weighted matching
(MWM) problem of a bipartite graph, and Zhang et al. [84]
extended this pair matching to clustering results with different
numbers of clusters. Following Hu et al.’s problem formulation,
we used the Kuhn-Munkres (KM) algorithm [48] to match the
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Fig. 1. (a) The attribute uncertainty specification view. (b) Region-based impact profile view. (c) The dual-choropleth view. (d) The impact quantity
scatter plot. (e) t-SNE clustering Projection View. (f) The configuration panel. (g) San Benito county (h) The impact matrix of San Benito county (i)
The impact of attribute uncertainty in San Benito county. (j) The impact matrix of Carbon county.

classification labels across the simulations such that the number of
flips would be minimized.

To find the best matching of RA and RB, we generate a complete
weighted bipartite graph, G, whose node set is {1,2,3, . . . ,N}×
{1,2,3, . . . ,N}, where N is the number of classes. The edge weights
of G are calculated as:

Wi, j = ∑u∈S I(RA[u] = i,RB[u] = j) (2)

where i, j ∈ {1,2, . . . ,N} refer to the classes. After running
the KM algorithm, N(RA,RB) can be easily calculated. In our
visualizations, we assign the matched group the same color for
visual consistency (i.e., we maintain the original label from the ai
classification on as many spatial units as possible).

Variation of Information: While the change in class labels
impacts the visual design, we are also interested in quantifying how
labels change in the ranges of data uncertainty. If we consider all
spatial units that belong to the same class as a cluster, then we can
compare how clusters form as their attribute values change. Cluster
comparison methods include counting pairs (e.g, Fowlkes-Mallows
Index [23], the Rand Index [65]), set matching [45], [56], and
entropy and information theoretic metrics [55]. In the family of

information theory, variation of information (VI) has been used as
a metric for comparing clustering results [54]. It has been shown
that VI considers not only the number of flipped units but also
the resultant clustering patterns. We use the normalized term of
VI to quantify the change between two classifications. We define
variation of information as:

V I =
1

2logK
V I(C,C′) (3)

where K is the number of class labels, C denotes the original
classification, and C′ denotes the simulated classification. Specifi-
cally, V I(C,C′) is the variation of information and quantifies the
information differences between how data is classified in C and C′.

3.2 Impact on Spatial Autocorrelation

Although the changes in class labels can be measured using
the approaches discussed in Section 3.1, these techniques do
not provide information as to whether data uncertainty changes
relationships between observations in spatial data analyses.
Measures of spatial autocorrelation are often critical for identifying
statistically significant local clusters, and we want to explore the
stability of these measures in the presence of data uncertainty.
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Spatial autocorrelation refers to spatial relationships between
observations which may be positive or negative [3]. Positive
spatial autocorrelation means that nearby observations have similar
attribute values. Negative spatial autocorrelation means that
nearby observations have dissimilar attribute values. Local spatial
autocorrelation has various indicators, e.g., local G [26], Geary’s
C [32], and local Moran’s I [4], [26]. We use the local Moran’s I:

Ii =
N(xi− x̄)T

∑ j wi j(x j− x̄)

∑ j (x j− x̄)T (x j− x̄)
(4)

We define the value of each spatial unit as a vector of class
indicators, xi = (c1,c2, . . . ,ck), where k is the number of classes
and ci is a binary indicator representing the class membership of
unit i. wi j is defined as the shared boundary between units i and j.

wi j =
li j

li
=

li j

∑k 6=i lik
(5)

where li j is the length of the boundary between units i and j.
We use the change in the local Moran’s I to quantify the impact

of uncertainty on spatial autocorrelation. This impact is calculated
both locally and globally in our system. We use Ii to denote the
local Moran’s I for unit i before the attribute value is adjusted in
our simulation process, and I′i as the simulated value. The impact
on local spatial autocorrelation is then calculated as:

Impacts(i) = I′i − Ii (6)

The impact on global spatial autocorrelation is measured by a
Euclidean distance of the local impact for all spatial units:

Impacts =
1√
N

√
N

∑
i=1

(Impacts(i))2 (7)

We are then able to explore the sensitivity of the map design based
on the amount of uncertainty in attribute values.

Here, it is important to note that the calculation of measures
of spatial autocorrelation are known to be sensitive to the choice
of the weighting function. While our implementation utilizes the
shared boundary, choices of the length of the shared boundary,
Euclidean distance, etc., would result in different calculations of
autocorrelation. Our methodology is appropriate for any variation
in the calculation as long as the chosen weighting function
remains consistent. Future work could explore how to incorporate
algorithmic uncertainties into the visualization design.

4 VISUAL ANALYTICS ENVIRONMENT

To support spatial analysis and map design under attribute
uncertainty, we have developed a visual analytics environment
that consists of three views. The first view is for the evaluation of
attribute uncertainty and allows users to examine attribute values
and define a range of uncertainty within the data. The second view
helps users quantify and summarize region-specific changes in
attribute values with varying levels of uncertainty. The third view
is a dual-choropleth map that helps users view and analyze changes
in classification results.

4.1 Attribute Uncertainty Specification
For any given dataset, our system is designed to load the data
and the uncertainty range by reading files, or is configurable for
the analyst to assign the uncertainty range for exploration on
the interface. Specifically, the uncertainty range is the lowest to

highest possible value for the attribute for the geographic unit.
This means that each unit can have its own unique uncertainty
range, which allows for a more robust analysis. For classification,
we implemented k-means; however, this can be generalized to
any classification method. For example, the system can switch
to Jenks natural breaks optimization algorithm [33] and quantile
classification [11] for single attribute classification. Classification
parameters (the number of classes k, the classification algorithm and
the attributes classified on) are set via the collapsible configuration
panel (Fig. 1 (f)). The attributes used in classification will be shown
on the attribute uncertainty specification view (Fig. 1 (a)).

The attribute uncertainty specification view uses a parallel
coordinates visualization to display user selected attributes. The
parallel coordinates plot is known to be suitable for showing
multiple data dimensions at once and enables the user to filter
each dimension while supporting the identification of correlations.
This method is widely used in geo visual analytics systems [13],
[34], [35], [64]. Each attribute is one axis, and each spatial unit is
represented by a line connecting the values on these axes. Values
of an attribute are transformed to be normally distributed, and
the bottom matches to the minimum value while the top is the
maximum value. A box plot is displayed on each axis to illustrate
the value distribution. Lines on the parallel coordinates are colored
by the unit’s class label (The legend is shown in Fig. 1 (c)).

On top of each axis, every attribute is associated with an
uncertainty configuration area, and by checking the selection
box, uncertain attributes are selected for exploring. An attribute
uncertainty range and step value can be specified with the
plus/minus settings. The user can also specify the uncertainty
range per unit by loading a file that describes the uncertainty.
The file should include records which contain the unit ID, unit
name, uncertainty range and step value. Given the uncertainty of
an attribute (or multiple attributes), we run simulations to generate
classification results for all possible values in the range at each step
interval as described in Section 3.1. For the attributes that have the
uncertainty specified, their order can be changed through drag and
drop, and this order defines their visual order in the multi-attribute
impact profile (Sec. 4.2.2).

4.2 Region-based Impact Exploration

In our system, the attribute uncertainty is explored on a per region
(spatial unit) basis. Users can explore uncertainty across either
one or many attributes to assess the impact on the classification.
Multi-attribute analysis is supported, and it is useful for exploring
when changes on a combination of multiple attributes may mitigate
or exaggerate the effects of uncertainty.

4.2.1 Single Attribute Impact Profile
To analyze the impact of attribute uncertainty, we designed a novel
view, the ‘impact river’ (Fig. 2), to visualize the amount of the
impact organized by spatial units. In the ‘impact river’ chart, a
horizontal axis (Fig. 2 (a)) shows the uncertainty range of the
attribute. Each row represents one spatial unit. Each cell of the
row encodes the impact of changing that spatial unit’s attribute
value with respect to both the variation of information (the upper
orange rectangles) and the spatial autocorrelation (the lower blue
rectangles). The height and the opacity of the rectangles denote
the quantification impact, where Eq. 3 is used for the variation of
information and Eq. 7 is used for the spatial autocorrelation. For
example, when exploring the uncertainty across an attribute, the cell
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Fig. 2. Illustration of the impact river chart. (a) The horizontal axis shows
the uncertainty range of the attribute. Here, the uncertainty range is in
the form of a percent change for the base value, and the extremes of the
range represent the minimum and maximum value that could be assigned
to a particular geographic unit. (b) The cell shows that when decreasing
the value of the attribute ‘Theft’ by 3% in Region36, the impact on the
variation of information and spatial autocorrelation are 0.16 and 0.18
respectively. (c) The bars denote the weighted impacts of each spatial
unit. (d) The uncertainty range from −2% and +2% which has no impact
on either the variation of information or the spatial autocorrelation.

(Fig. 2 (b)) shows that when decreasing the value of the attribute
‘Theft’ by 3% in Region36, the quantification of the impacts on the
variation of information and spatial autocorrelation are 0.16 and
0.18 (the impact on global spatial autocorrelation) respectively.

To help the analyst identify the spatial units that are most
sensitive to uncertainty, the impact river chart sorts all spatial units
according to a weighted sum of the impact on the variation of
information and the spatial autocorrelation. The analyst can modify
the weights by sliding the weight bar on the top of Fig. 2 (c). The
length of the two bars for each spatial unit denotes the weighted
impacts of each unit. From the impact river chart, the analyst can
observe the trend of the classification impact over the range of
attribute uncertainty and understand the tolerance of uncertainty
over each spatial unit. For example, in Fig. 2 (d), when the value
changes within the range of −2% and +2%, there is no impact on
either the variation of information or the spatial autocorrelation.
This indicates that the attribute A is not sensitive to small changes,
and the resulting map design on the single variable classification,
and measures of local spatial autocorrelation, should be robust.

4.2.2 Multi-Attribute Impact Profile

While the impact river chart works well in the single attribute
case, in cases such as geodemographic profiling, classification is
often performed over multiple attributes. To support the exploration
of uncertainty over multiple attributes on the same spatial unit,
we employ the use of a multi-layer impact matrix (Fig. 3).
Simulations are run for all possible combinations of attribute
values in a specified range, and we organize the impact on variation
of information and spatial autocorrelation by spatial units and
attributes using a matrix view and force-directed layout. For each
spatial unit, the order of the layer depends on the attributes order
as specified in the uncertainty specification view. At the beginning
of the analysis, the impact matrix only shows the simulation results
over the first two attributes. Each cell of the matrix matches to
a pair of values that the attributes have changed by. Given these
changes, the color shows the average amount of the impact over all
simulations as the attributes change over their uncertainty range.
The inner square (in blue) shows the quantified impact on the
spatial autocorrelation, while the outer square (in orange) shows
the impact on the variation of information. For example, the cell a
in Fig. 3 illustrates the impact when the attribute ‘Disturbances’ is

Fig. 3. Visual design for the impact matrix: The inner square (in blue)
shows the quantified impact on the spatial autocorrelation, while the
outer square (in orange) shows the impact on the variation of information.
The darker color refers to larger values. (a) A cell represents the
average impact when attribute ‘Disturbances’ is changed by -1% and
‘Drunkenness’ remains unchanged. (b) A matrix layer shows if attribute
‘Disturbances’ and ‘Drunkenness’ both change by -1%, what is the impact
when attribute ‘Burglary’ and attribute ‘Theft’ changes by -2% or -1%.

changed by -1% and attribute ‘Drunkenness’ remains unchanged.
To inspect more attributes, the user can click on a cell to expand the
impact matrix. The expanded matrix will fix the change of the two
outer attributes and visualize the impact of the next two attributes
(or one attribute when there is only one left). For example, in
the expanded matrix marked as b on Fig. 3, ‘Disturbances’ and
‘Drunkenness’ are the two outer attributes and fixed as changing
by -1%, the cells visualize the impact when attribute ‘Burglary’
and ‘Theft’ change by -2% or -1%. When the number of spatial
units under analysis is too large, the analyst can filter the profiles
by setting a limited number of impacts on variation of information
and spatial autocorrelation. Spatial units that had impacts less than
the specified threshold will be filtered out.

4.2.3 Profile Projections
The multi-attribute impact profiles for all spatial units that
have a non-zero impact on variation of information or spatial
autocorrelation will be projected in the analysis view of the system.
We have implemented two types of profile projections to support
the mapping between the impact profile to a unit’s geolocation, and
the analysis of similar units with respect to their impact quantities.
Both projections are implemented by adding position constraints
to a force-directed layout method. The implementation has two
steps, initialization and adjustment.

Initialization: The position of the impact profiles is initialized
using the spatial units’ geolocation or 2D coordinates given by
PCA (principal component analysis) from a high-dimensional
representation of the impact values.

• The geo-based layout uses the coordinates corresponding
to the unit’s geospatial centroid (the latitude and longitude
of the center of the spatial unit).
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Fig. 4. Illustration of the views in the system. (a) and (b) show the impact matrix in the map-based layout and the PCA-based layout respectively. (c)
marks a group of spatial units which all have impacts shown on their bottom-right rectangles, and (d) marks a group of spatial units which have
little impact on variation of information and spatial autocorrelation. The t-SNE projection (e) shows the glyph for encoding the comparison of the
classification result in a 2-D space. (f) shows the parallel coordinates of attribute ‘EDU635213’ and ‘EDU685213’ and (g) shows the impact that
uncertainty in ‘Douglas’ will have, and (h) shows the impact that uncertainty in ‘Juab’ will have. (i) shows the spatial unit change from Ca to Cb.

• The similarity-based layout uses the first two principal
coordinates given by PCA. We extract the quantified impact
of all cells in each impact matrix to obtain a set of high-
dimensional vectors. Then, we run the PCA algorithm to
convert vectors into PCA space and reduce them to 2D
coordinates.

Adjustment: After initializing the matrices in 2D space, according
to their coordinates from geolocation or PCA projection, these
impact profile matrices could suffer from being too sparse or too
cluttered. To improve the readability, we employ a force-directed
layout approach to iteratively adjust their positions. Specifically,
we employ the Dynamic Natural Length Spring algorithm
(DNLS) [47] to solve the problem of dynamic drawing overlap.

Visual Interpretation: One example of the impact profile
projection result is shown in Fig. 4. The relative position of
matrices in the Geo-based layout (Fig. 4 (a)) corresponds to their
geographical coordinates on the map as illustrated by the red dashed
lines. In the PCA-based layout, the matrices that have a similar
impact on the variation of information and spatial autocorrelation
are placed close together. For example, Fig. 4(b) shows that spatial
units in the group c all have impacts shown on their right rectangles
in the matrix. This pattern indicates that these units will have an
impact on the classification result when the first attribute being
analyzed tends to increase. In contrast to group c, units in the group
d show a minimal impact on variation of information and spatial
autocorrelation when their attribute values change. Note that during
the exploration of the matrices, expanding the impact matrix will
also lead to overlap. To solve this problem, we perform additional
adjustment steps until the position converges.

4.3 Simulation-based Impact Exploration

For each attribute value change, our system runs one classification
simulation and compares the simulated results to the original
classification. In order to support such a comparison, we have

implemented a dual-choropleth map view, a t-SNE projection of
classes, and an impact quantity scatter plot.

Dual-Choropleth Map: For the exploration of one simulation,
our system uses a dual-choropleth map to show the variation of
information and the spatial autocorrelation impact for each spatial
unit (Fig. 1 (c)). The dual-choropleth contains a classification
impact map (left) and a spatial autocorrelation impact map (right).
When one simulation is under analysis, the classification impact
map colors each spatial unit based on their class label, while the
spatial autocorrelation impact map colors each spatial unit based
on the magnitude and direction of the change of its local spatial
autocorrelation (local Moran’s I).

Specifically, in the scenario that an attribute of spatial unit i is
changed due to some uncertainty, and this change results in that
spatial unit j changing classification labels, the classification map
will then highlight unit i with a wide border and render unit j with
a striped texture where the color of the narrow strips refers to the
original classification label while the color of the wide strips refers
to the new classification label. Similarly, the spatial autocorrelation
impact map will visualize spatial units whose local Moran’s I
changes more than a user-defined threshold. Blue indicates a
decrease of a unit’s local Moran’s I and red indicates an increase.
While the hue of the color is proportional to the magnitude of
spatial autocorrelation change, a slider is provided to filter out
units with small change.

t-SNE Classification Projection: To illustrate how these spatial
units change in their attribute space and how some units change
classification labels, we use t-SNE projection to reduce selected
attributes used in the classification to two dimensions and plot all
units on a scatterplot. Each spatial unit is represented as one dot
whose color matches the class label. Each class is further shaded
by the color to indicate the boundaries of each group.

Given a simulation, this visualization displays the spatial
unit with a changed attribute as an enlarged dot and encodes the
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impacted units as a special glyph. Fig. 4 (e) shows the visual
encoding of the glyph, where the color of the inner circle denotes
its original class, and the outer circle represents the new class.
Other than spatial units, class centroids are also visualized in this
plot. Each centroid is displayed as a black dot in the barycenter
of each class. We use animation to visualize the change in
classification. This allows the analyst to see how classes change
and how one unit moves towards or away from its original class.
For example, if an element changes from Ca to Cb, we can observe
that it moves from the position close to Ca to somewhere close to
Cb (Fig. 4 (i)).

Impact Quantity Scatter Plot: As shown in Fig. 1 (d), to visualize
the impact on variation of information and spatial autocorrelation,
we plot each simulation on a scatter plot where the x-axis is the
variation of information (VI) and the y-axis is the global spatial
autocorrelation (Impacts) derived from the local Moran’s I. This
scatter plot provides an overview of the impact of uncertainty on
empirical results.

Coordinated Interactions: All visualizations are linked. On the
impact profile visualization, if one spatial unit is selected, the
unit will be highlighted in the dual-choropleth map by a thick-
red boundary. For all values in the uncertainty range, if the
corresponding simulation impacts the classification result, a dot
will appear on the impact scatter plot. Thus, all simulations for
the selected unit will be plotted on the scatter plot to visualize the
overall impact of uncertainty. In addition, to visualize the robustness
of the spatial unit to attribute uncertainty, the uncertainty range of
this unit where no impact is observed will be illustrated with a gray
rectangle on the attribute axis. When there is no selected unit, the
impact on VI and spatial autocorrelation of all simulations for all
spatial units are visualized on the scatter plot.

Linked interactions are enabled when a single simulation (the
attribute value is changed by a specific value on a specific spatial
unit) is selected. Users can mouse over one simulation on the impact
profile visualization or on the impact scatter plot. The changes in
attributes will be visualized on the attribute specification parallel
coordinates. First, the line associated with the spatial unit will be
highlighted at its original location. Then the values of the changed
attribute will be used to draw another line indicating the position
of the unit after the change. The original values and the new values
are all marked on the axis to inform the user of the exact value
change. If after this change the unit class flips, the new line will
be colored in the new class color. For analyzing the simulation,
the corresponding impact of the variation of information and the
spatial autocorrelation will be displayed in the dual-choropleth
map. The t-SNE view will show the changes in the projection of
the data and enlarge the corresponding points of the spatial units.
Users can click on the impact profile view to select a particular
simulation and this will fix the visualization of the dual-choropleth
map and t-SNE view. Also, in the dual-choropleth map, when the
user hovers over a spatial unit, the detailed data of the unit will
pop up, and its corresponding profile will be highlighted.

5 CASE STUDIES

In this section, we will demonstrate how our proposed metrics and
visual analytics environment enable the exploration of attribute
uncertainty and its impact on choropleth map design and analysis
through three case studies. We will start with a one-dimensional

classification case followed by a bivariate classification analysis.
We conclude with an example of multivariate classification.

5.1 Single Attribute Classification

In our first case study, we use Chicago crime data to illustrate how
value changes for one attribute could impact classification results
and spatial autocorrelation. This dataset (which can be downloaded
at https://data.cityofchicago.org/) contains administrative records
of crime events in 76 community areas in 2015. There are 148,004
crime events with 10 crime types, among which 38.7% are marked
as ‘Theft’. Our goal is to develop a choropleth map to illustrate the
distribution of ‘Theft’ events and explore how attribute uncertainty
might reshape the choropleth map.

Using the k-means algorithm, we classify the 76 spatial units
into 6 classes. We assign each class a color where darker colors
indicate more events as shown in Fig. 5 (d). By observing the
distribution of these ‘Theft’ events in the attribute uncertainty
specification view, we find that the maximum number of ‘Theft’
records in one region is 4,182, and 75% of the regions only had
41 to 856 ‘Theft’ events (with a median of 543). To explore the
tolerance that this classification would have on uncertainty, we
specify the uncertainty range to be -10% to +10% with a step of 1%.
Here we note that if uncertainty information is provided, the system
would load this for each spatial unit. In this example, uncertainty
could arise from miss-classification of events, geocoding errors, etc.

No Impact Range: We first look at the sensitivity of all regions,
that is, we explore to what degree the uncertainty of this attribute
would (or would not) impact the classification results. From the
impact river chart (Fig. 5 (a)), we find that 61 regions have no
impact on the classification results when their values change
between -10% and 10%. Furthermore, we can observe that when
‘Theft’ events are analyzed, the overall classification result and
choropleth map on 6 classes will not be impacted when the record
value for one region is off between -2% and +2%.

Group Patterns on the Classification Impact: Next, by
screening the impact river, we find that the spatial units that may
have an impact on the classification results are separated into two
groups. In one group, a region tends to impact the classification
result when it has more ‘Theft’ events, while in the other group a
region will impact the classification result when it has fewer events.
Examining the ‘Theft’ event counts in these regions on the parallel
coordinates plot and the class projections on the t-SNE view, we
observe that these regions are at the boundary of two classes. This
indicates that they are more prone to changes in classification.
Thus, a small amount of turbulence in these near-boundary regions
might flip them to another group. We also note that all the regions
with a light color, which denotes a low crime rate, will have no
impact on both the visual appearance and classification result
when their ‘Theft’ attribute value is changed in the range from
-10% to +10%. In other words, these regions have a relatively high
tolerance to data uncertainty.

Most Influential Regions: After analyzing group patterns with
respect to sensitivity, we focus on a few regions which have been
identified to be the most influential ones, i.e., units that will impact
the classification result with a small change to their attribute values.
When the number of ‘Theft’ event in Region57 drops by 3% (Fig. 5
(c)), this region will be classified into a lighter color group (the
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Fig. 5. (a) The impact river shows that when the attribute is changed by -2% to +2% there is no impact on the classification results. (b) Region9 starts
to change class with its ‘Theft’ record increased by 3%. (c) Region57 will change its class when its ‘Theft’ record decreased by 3%. (d) The choropleth
map illustrates the distribution of ‘Theft’ events. (e) The impact that uncertainty in Region9 will have. When the ‘Theft’ record of Region9 increases
by 3% or more, it will be classified to a darker color class, and therefore increase the local Morans I of Region9 and its surrounding areas. (f) The
t-SNE view illustrates how Region9 and Region57 change in attribute space. (g) The impact that uncertainty in Region57 will have. When the ‘Theft’
record of Region57 decreases by 3% or more, it will connect the eastern and western spatial units which creates a larger contiguous region so that will
decrease the local Morans I of eastern and western regions. (h) The impact of uncertainty in Region36.

shaded region in Fig. 5 (g)). By analyzing the impact on the
classification results, we find that the local Moran’s I of its eastern
and western contiguous regions is decreased while its northern
neighbor’s local Moran’s I is increased. The reason is that Region57
is reclassified from the northern region’s class to the eastern and
western regions’ class. Therefore, Region57 connects the eastern
and western regions and creates a larger contiguous region. Next,
we investigate the observations around Region57 and find that its
surrounding observations do not impact the classification results
when their attribute values change in the specified range (-10% to
+10%). This seems to indicate that Region57 is a critical spatial
unit whose accuracy may determine the visualization results of this
local area, thus making the requirement of the data accuracy of
Region57 a high priority.

Similarly, we can observe Region9 (the shaded region in Fig. 5
(e)), whose class will change when its ‘Theft’ record increases by
3% (Fig. 5 (b)). Looking at the dual-map view, we find that when
the ‘Theft’ record of Region9 increases by 3%, it will be classified
to a darker color class, and therefore detaches from its neighboring
regions. As such, the local Moran’s I of Region9 and its surrounding
areas will increase. Alternatively, we find that in Region36 if the
‘Theft’ attribute value decreases by 3%, the classification results
will be globally reshaped as shown in Fig. 5 (h). This is due to
the attribute value distribution. In the original 6 classes, the two
regions with the first and second highest number of ‘Theft’ events
each formed a single class. Region36 has the most ‘Theft’ events,
and when decreased, is merged into the nearby region which has
the second highest ‘Theft’ record. Such a change causes one class
to become empty. Therefore, the system will select several regions
to form a new class and such re-classification will change the labels
of almost all spatial units. In the original classification result, the
darkest color class has one region (Region36) and the second darkest

color class also has one region. Other than these two regions, the
remaining regions form 4 classes. After the decrease in Region36,
the darkest class contains two regions since the highest region and
the second highest region are regrouped to form one class.

As mentioned by the dataset provider, the addresses of the
crime events are reported at the block level, and the crime type,
count, and address are not guaranteed to be accurate due to possible
mechanical and human errors. Therefore, it is critical to know about
the attribute uncertainty while using classification and choropleth
maps to analyze these data.
Generalization: In order to demonstrate the generalization of
the effectiveness of our visual analytics methodology on other
datasets, datasets with different distributions are explored. We
generated geospatial data with a Normal distribution and heavy-
tailed distribution. Then, we ran Jenks optimization and manually
assigned these data to regions to obtain maps with large spatial
autocorrelation (e.g., the Global Moran’s I of Fig. 6 (a) and
Fig. 6 (c) is 0.69 and 0.68 respectively) as well as small spatial
autocorrelation (e.g., the Global Moran’s I of Fig. 6 (b) and Fig. 6
(d) is -0.20 and -0.25 respectively). Next, we specify the uncertainty
range to be -10% to +10% with a step of 1% and begin our analysis.
We observed that the results show the same characteristics as in
the real dataset. For example, the red rectangles in Fig. 6 indicate
that all regions have a ‘no impact range’, and the regions can be
clearly classified into two groups. In one group, a region tends
to impact the classification result when it has a larger data value,
while in the other group, a region will impact the classification
result when it has a smaller data value. Comparing the impact river
of the Normally distributed data and the heavy-tailed distributed
data, we found that the regions are more sensitive to the data
uncertainty when they follow a Normal distribution. The reason is
that the gap between the classes is small when the data distribution



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX 20XX 10

Fig. 6. Single attribute classification results with (a) Normal distribution data and large Global Moran’s I (b) Normal distribution data and small Global
Moran’s I (c) heavy-tailed distribution data and large Global Moran’s I, and (d) heavy-tailed distribution data and small Global Moran’s I.

is Normal. Different spatial autocorrelation values do not seem
to drastically impact the results of the analysis. For example, in
Fig. 6 (c) and (d), despite having different Global Moran’s I, the
gap in the analysis results is negligible. Further studies on data
distributions on uncertainty impact are left as future work.

5.2 Bivariate Classification

To explore the impact of attribute uncertainty on classification and
choropleth maps when performing bivariate classification, we used
the U.S. Census data (https://geodacenter.github.io/data-and-lab/
/county election 2012 2016-variables/) and extracted the 118
counties in the southwestern United States (Covering 4 states: CA,
AZ, UT, and NV). Among all available attributes, we selected
two educational variables, ‘EDU635213’ and ‘EDU685213’.
‘EDU635213’ represents the percentage of high school graduates or
higher education populations over the age of 25, and ‘EDU63521’
represents the portion of people who have bachelor’s degrees or
higher. Our goal was to develop a choropleth map to explore these
educational variables.

Attribute Correlation: We expect that the two educational
attributes should be highly correlated because a region with
high education levels should have both higher rates of secondary
education and college degrees. However, when we look at the
parallel coordinates plot (Fig. 4 f), our expectation is only partially
supported. We find that in the regions with the lowest rate of
secondary education (colored in pink), the level of higher education
is, unsurprisingly, the lowest, and the regions with the highest
levels of education also have the highest secondary education rates
(e.g., Sacramento and San Francisco). However, there are some
regions that have a high rate of secondary education but a low
rate of higher education (e.g., Box Elder County in UT). We run
k-means and generate a 5-class choropleth map as shown in Fig. 4
(j). We specify the uncertainty range of both secondary and higher

education rates as -3% to +3%, with a step of 1%.

Group Patterns on the Impact Profiles: The region-based impact
profiles are first visualized using the geo-based layout. In each
impact profile matrix, the rows represent the changed percentage
of the secondary education rate, and the columns represent the
changed percentage of the higher educational rate. We find that
there are only a few regions in the Central and South area that are
influential in the map design. However, regions in the Northeast
and Northwest have high sensitivity to uncertainty, and some of the
regions greatly impact the classification results when their attribute
values change. Thus, counties in the northeastern area might need
more attention to data uncertainty.

Turning to the similarity-based layout of the impact profiles
(Fig. 4 (b)), we find that increasing the value of the data
will have more impact than decreasing the value since most
changes are visualized on the lower-right corner of each impact
matrix. We also find that the colors of some matrices change
with each column, which means that the regions are more
sensitive to the uncertainty of the secondary education attribute
than to the higher education attribute. We carefully investigate
these regions on the map and find that these regions are all
colored pink, which means their secondary education rate is
low and determines their classification label. There are other
matrices that change colors with each row, this is because their
secondary education is already widespread, and the gap in higher
education rate is larger than in secondary education. Therefore, the
classification results are influenced by the level of higher education.

Most Sensitive Regions: Next, we filter the regions by their impact
using the sliders and focus on the regions that have a large impact
on the classification results. One of these regions is Douglas County
(Region39 as shown in Fig. 4 (g)). When its higher educational rate
increases by 1%, the classification results will have a significant
change throughout the regions. Looking at the t-SNE view and the
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Fig. 7. Illustration of the bivariate classification results of data with (a)
Normal distribution and (b) heavy-tailed distribution. (c) The impact
quantity scatter plot shows that with the similar variation of information,
the impact on spatial autocorrelation can be different. (d) The regions that
are sensitive to uncertainty in attribute2. (e)The regions that are sensitive
to uncertainty in attribute1.

dual-map view, we find that when the value of ‘Douglas’ increases,
it will be assigned to a group with a higher level of education.
Meanwhile, another county, ‘San Juan’, will also be assigned to a
higher level education group since their education rates are at the
ceiling of their original group. The visual spatial impact covers the
entire area under classification. As illustrated in Fig. 4 (g), all areas
experience a change in their local Moran’s I. This means Douglas
County drives the map classification results.

Similarly, Juab County in Utah (Region101 as shown in Fig. 4
(h)) is sensitive to uncertainty in the secondary education rate. By
increasing the level of secondary education rate by 1%, Juab County
will be assigned to a class with a higher educational level. After
investigating the impact on spatial autocorrelation, we find that
the local Moran’s I of all regions have changed. Specifically, the
northwest and northeast regions had their local Moran’s I decreased
because some regions changed their class and connected with the
surrounding regions.
Generalization: To explore a generalization of bivariate classifica-
tion effects, we generated sample two-dimensional datasets with
a Normal distribution and heavy-tailed distribution. We assigned
these data to spatial areas and run k-means to generate 6-class
choropleth maps. The Global Moran’s I of classification results
with Normal distribution data (as shown in Fig. 7 (a)) and heavy-
tailed distribution data (as shown in Fig. 7 (b)) are +0.047 and
−0.048 respectively. We specify the uncertainty range to be -10%
to +10% with a step of 2% and begin our analysis. As shown
in Fig. 7, in each impact profile matrix, the columns represent
the changed percentage of attribute1, and the rows represent the
changed percentage of attribute2. Looking at the impact quantity
scatter plot, we found that even with the similar variation of
information, the impact on spatial autocorrelation can be different,
especially in the Normally distributed data (as shown in Fig. 7 (c)).
Next, we observed that the impact profiles show group patterns.
For example, the regions in Fig. 7 (d) are sensitive to uncertainty in
attribute2, while the region corresponding to Fig. 7 (e) is sensitive
to uncertainty in attribute1. We also found that there are more
impact profiles in Fig. 7 (a) than Fig. 7 (b), which indicates that
the areas are more sensitive to data uncertainty when their values

are Normally distributed. The reason is that observations in the
Normal distribution are closer so the gap in the classification result
is smaller than in the heavy-tailed distribution.

5.3 Multivariate Classification

For complex classification problems that have multiple attributes,
relevant analysis includes the identification of which attributes are
the least and most significant to the classification result, which
regions are most sensitive to uncertainty with respect to their class
labels, and what might be misinterpreted if the data is uncertain.

To demonstrate the effectiveness of our system when analyzing
the impact that uncertainty can have when dealing with multiple
attributes, we run a classification of 6 classes for the following
six attributes: education (‘EDU635213’, ‘EDU685213’), median
household income (‘INC110213’), the percentage of foreign-born
persons (‘POP645213’), the difference between the number
of votes for Republican and Democratic candidates in 2012
(‘diff2012’), and the percentage of persons below poverty level
(‘PVY020213’). The classification results are shown in Fig. 1
(c). We find that the most developed areas (e.g., San Francisco
and Los Angeles) are colored in blue and purple. These areas
have a high percentage of foreign-born persons and a high
educational level. In contrast, the orange and pink groups (e.g., the
northern area of California and the southern area of Nevada) have
lower educational attainment and lower median household incomes.

Influential Attributes: We selected four attributes to explore the
impact of uncertainty, and set the uncertainty range of ‘POP645213’
(foreign-born population), ‘EDU685213’ (education), ‘INC110213’
(household income), and ‘PVY020213’ (persons below poverty
level) from -5% to +5% with a step of 2%. The initial analytic
order of attributes is foreign-born population, education, household
income, and persons below the poverty level. We filter out regions
that have a small impact by setting the threshold of classification,
quantified by the variation of information, as ‘0.04’. Looking at
the impact profiles of the regions (Fig. 1 (b)), we find that almost
all of the matrices (except Region44 and Region45) change their
colors along the columns, which indicates that the uncertainty
of the first-order attribute ‘foreign-born population’ has a broad
impact on the classification results.

Impacts from Other Attributes: Looking at San Benito County
(Region58 as shown on Fig. 1 (g)), we find a large number of cells
colored in the impact matrix centered at the bottom left. This means
that when the value of ‘foreign-born population’ decreases and
the value of ‘education’ increases, San Benito County will impact
the classification result. We expand this impact matrix to explore
the impact on the next two attributes. As illustrated in Fig. 1 (h),
the sub-matrix of San Benito County changes its color according
to the value change of the third attribute ‘household income’.
To summarize, the uncertainty of the foreign-born population,
education and household income of San Benito County impact the
classification.

Next, we select one of these simulations to analyze the local
impact on these regions. We find that when the attributes of San
Benito County changed, some other regions are impacted and
switch their class from gray to blue or from blue to other classes.
As illustrated in Fig. 1 (i), the local Moran’s I increased in the
northeast and decreased in the northwest. Thus, it is important to
require accurate attribute values for San Benito County because



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX 20XX 12

the overall classification seems to be very sensitive to its value
change. There are also some regions in gray and blue that are
easily impacted so analysts may need to pay more attention to
them. In addition, the attribute value for household income also
has a significant impact on the clustering results.

In order to further explore the relationship between these
attributes in terms of their classification impact, we move
‘household income’ to second place (from fourth place) in the
list of analytic attributes. We find that the impact of many regions
in the matrices is shown as a triangle. In some regions, when the
household income and the number of foreign-born increase, it
will impact the classification results. However, in Carbon County
(Region102 as shown in Fig. 1 (j)), only the uncertainty of household
income will impact the classification result. We click the impact
matrix of Carbon County and expand the matrix view to explore it
in detail. We find that the impact of the area on the clustering results
increases when the attribute value of household income and poverty
rates change. We also find that Carbon County is changed into the
gray cluster, and it will impact many other regions switching their
colors to blue. As a result, the local Moran’s I of the northeastern
areas have increased while the western areas decreased.

Finally, we select ‘persons below poverty level’ as the second
order analytic attribute. Looking at the impact profiles, we find that
except for Region102, Region7, Region44 and Region34, the colors
of the matrices do not change along the rows. This indicates that
the classification results are not sensitive to the uncertainty range
of the persons below poverty level attribute.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a visual analytics methodology to help
map designers and analysts explore the impact that uncertainty
of data attributes will have on both map classification results
and spatial autocorrelation. Our system consists of a parallel
coordinates-based attribute specification view, an impact river
visualization for single attribute classification analysis, an impact
profile visualization for multiple attributes classification analysis, a
dual-choropleth map and t-SNE-based visualization to illustrate the
class change of spatial units and the visual impact. We demonstrated
the possible findings using this system to explore uncertain data
through three concrete examples.

From our case studies, we demonstrate how our system can
be used to show the impact of uncertainty on map classification
and spatial analysis. We also find that, in many cases, it was
the boundary units (between two classes) that tend to flip their
classes. However, this may be caused by a value change in another
unit, not necessarily the class-changing unit itself. Furthermore,
some class flips of multiple spatial units are co-instantaneous.
Therefore the analyst should consider the integral effect. We also
observed that the influence on the map classification result is
different among attributes. By looking at the pattern on the impact
profiles and changing the attribute order, the analyst can learn how
the uncertainty of some attributes might cause more significant
changes on map classification than other attributes. Finally, when
multiple attributes are analyzed together, the impact of different
attributes might counteract each other. In this cases, these attributes
could both be sensitive to classification.

However, our system also has several limitations. First, when
the data dimension and the number of spatial units increase, the
number of simulations will become large, and our system will suffer
from an increased computational cost. A possible solution could

be to preprocess the data with a preset uncertainty range and step.
For the impact matrix view, as the number of selected attributes
and uncertainty range increases, it is inconvenient to show the
entire matrix by clicking the rectangles one by one. Furthermore,
the views designed may not be optimal for identifying changes,
and future work could explore novel design alternatives. Second,
when the analyst uses this tool to explore data, some findings and
discoveries might also be related to the clustering algorithm used
in that particular scenario. Finally, our system analyzes the impact
due to a single spatial unit; however, future work should consider
cascading effects when multiple units change simultaneously.
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