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VAUD: A Visual Analysis Approach for
Exploring Spatio-Temporal Urban Data

Wei Chen, Zhaosong Huang, Feiran Wu, Minfeng Zhu, Huihua Guan, and Ross Maciejewski

Abstract—Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis.
In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the
visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by
leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter,
aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the
effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and social-
information of 14 million citizens over 22 days.

Index Terms—Urban data, Visual Analysis, Visual Reasoning, Heterogeneous, Spatio-temporal.
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1 INTRODUCTION

S ENSING technologies, social media and large-scale computing
infrastructures have produced a variety of urban data (e.g.,

human mobility, mobile phone calls, traffic, etc.). Designing
approaches and tools to understand and utilize urban data brings
a unique set of research and engineering challenges, specifically
with regards to data querying and analysis. Despite the wealth
of research on urban data, contemporary analytical tools [4],
[5], [21], [26], [42], [44] are often inadequate to handle the
large volume, sparseness and heterogeneity of data, let alone
support interactive visual analysis in data-intensive applications.
Specifically, most visual analytics tools tend to focus only on
a single data source making it difficult to discover and link
overlapping details of an event from multiple data sources. In
order to support real-time visualization and interactive analysis
of massive spatio-temporal data, visual analytics approaches
commonly adopt in-memory databases and custom-built data
representations [13], for example, the space-time cube [20], [22],
spatio-temporal aggregation [25], [26] and feature extraction [2],
[11], [17]. However, since urban data is collected from different
domains (e.g., mobility, power consumption, traffic, social media),
there is a need for tools that can perform cross-domain analytical
tasks. Such a system demands relation-aware data queries and
reasoning that leverages the spatio-temporal inter-connectedness
of information within a uniform space.

This work focuses on two key challenges in developing
a framework for multi-source urban data analysis, specifically,
visual queries and visual reasoning. Visual Queries: In analyzing
urban data, visualization is often the interface that connects
massive data items to human intelligence. As an essential
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component, visual queries must provide analysts with the ability
to investigate and directly access selected data points or features.
However, many patterns and events can be obscured in urban
data, requiring the fusion of multiple datasets in order to
enable complex pattern analysis and identification. Previous visual
analysis approaches are typically designed for exploring only
a single data source, e.g., trajectories or movements [9], [15].
To enable breakthroughs in data exploration where information
overload is a barrier to insight, there is a dire need for a
means of cross-domain visual querying that effectively fuses the
knowledge from multiple data sources. Visual Reasoning: To
allow users to derive insights with no prior knowledge, it is
desirable to only show the most relevant portions of a dataset
while suggesting directions for potential exploration. The key
is the proper utilization of semantic information that resides in
the spatio-temporal and social inter-connectedness of urban data.
Existing visual reasoning solutions for urban data [6], [38] do
not focus on methods for semantically linking multiple urban
data sources; instead, they focus on a single, domain specific
data set. Our goal is to utilize the inter-connectedness among
multiple domains, thus developing a visual analysis system that
can deduce implicit relations, reveal hidden patterns, and identify
events of interest through an exploratory visual interface. Here,
we present a visual analytics system that supports visual queries
and reasoning across multiple, semantically linked urban data sets.
Our contributions include:

• A new visual query model that enables cross-domain
correlation and deduction from multiple data sources.

• A visual analytics framework that supports the
visualization, correlation, querying, and reasoning of
citywide urban data for various analysis tasks.

Our approach leverages conventional visual analytics approaches
for cyber-physical-social (CPS) systems [23] and empowers users
with insights and decisions derived from cross-domain data. To
demonstrate the efficacy of our framework, this paper will focus
on a real urban dataset collected from Jan. 10, 2014 to Jan. 31,
2014 in a city with a population of 14 million, more details
are described in Section 3.1. Case studies using this dataset



2

are provided to demonstrate our visual querying and reasoning
functionality. While this dataset is only a small portion of the
data domains that are produced citywide, this dataset does cover
a variety of urban data categories including: spatio-temporal,
environmental, social, cyber, text, and traffic. As such, the dataset
and case studies serve as an exemplar for our framework and
demonstrate how this framework could be applied for managing
and analyzing cross-domain urban data.

2 RELATED WORK

Our work builds on visual analytics research for urban data that
spans data management, querying, reasoning, and visualization.
Urban Data Management: Massive, heterogeneous, and
spatio-temporal urban data poses many challenges with regards
to data representation and management for visual analytics [8],
[13], [45]. We explore urban data in the context of: space
(where), time (when), and objects (what) [29], [31]. In the visual
analytics community, work has been focused on representing
spatio-temporal data trajectories or categorical event data. The
mainstream data structures for such work include the space-time
cube (STC) [22] which employs a 3D grid where each voxel stores
some part of the data, and time is (generally) represented along the
Z-axis where the X and Y axes represent the geographical space.
Extended variants (e.g., [24]) of the STC facilitate efficient object
localization and event detection [20]. To improve the performance
of visual exploration, spatio-temporal aggregation techniques [2],
[25], [26] are widely employed. In particular, nano-cubes [25]
introduces a hierarchical sparse representation in different tree
levels to achieve interactive analysis rates. Despite the dramatic
progress of the data management community in terms of storage
and performance, integrated schemes that can support querying
across multi-source urban data are still under-explored. Our work
uses the space-time-cube (STC) [22] as the canonical space to
manage spatio-temporal objects. In addition, data objects (e.g.,
persons, cars, places, events) and the connections between the
objects are also stored.
Urban Data Query: Data querying is an essential function of
databases which allows the user to retrieve data from one or
more tables or expressions [36]. While standard data queries
are performed for relational databases, retrieving information
from urban data is challenging, and a variety of spatial database
structures have been developed [1], [46]. The challenge is how
to encode unstructured data and retrieve information based on a
given criteria. Spatio-temporal data typically comes in the form of
categorical events, values mapped to an areal unit, or trajectories.
Recently, much attention has been paid to clustering and querying
trajectories [16], [46]. Typical solutions use the location as an
index to perform similarity computations [9], but recent work by
Sakr, Attia and Güting [32] has introduced a language that can
consistently express and evaluate sets of spatio-temporal pattern
queries.

Rather than retrieving information from database systems via
programming languages, many systems now employ visual queries
as a means of engaging more casual users. In a visual query
scheme, analysts can dynamically construct and modify the query
by means of a sequence of user interactions, achieving a balance
between simplicity and expressiveness. Many models have been
proposed for visually querying spatio-temporal data [15], [38].
By allowing users to manipulate strokes and iteratively refine the
results in the visualization, the user’s intention can be inferred

from the topology of sketches and be used to perform queries.
Our query model adopts the notion of defining user intention via
dragging and dropping and offers extensions that are designed to
support queries over multi-source data.
Urban Data Visual Analysis: As more and more data has
become available, the need to develop methods for dynamically
exploring related datasets has grown. Specifically, in the urban
planning community, access to multiple data sources can provide
insights into traffic patterns, food deserts and a variety of other
issues that planners should account for. Representative work
includes inferring air quality, diagnosing urban noise, real-time
gas consumption and pollution emission, and real estate ranking
and clustering [30], [39], [46]. A major problem with past analyses
is that most analytical algorithms process data from start to finish
regardless of the time it takes. However, humans conducting
interactive tasks expect results to appear quickly, even if the initial
results are incomplete or estimations. Such a requirement lends
itself well to a visual analytics approach [43].

Yet, the visualization of urban data is still a challenging
task. The amount of urban data collected often exceeds
the upper limit of interactive visualization tools. While data
management and analysis algorithms can reduce the number of
items and dimensions through feature extraction, low-dimensional
embedding, sampling or aggregation, a major challenge when
connecting analytical algorithms to interactive visualizations
is maintaining interactivity. For spatio-temporal urban data, a
visual analysis system typically employs the STC representation
to support manipulation and querying of information in a
unified space [2]. Conventional solutions [4], [11], [17], [18]
couple analytical, topological, and visual methods for dissecting
and studying spatio-temporal and multivariate data. To support
communication and coordination in collaborative sense making,
other views can also be integrated [28]. However, very few
systems exist that explore methods of cross data source analysis,
fusion and visualization. In fact, most studies focus on visual
analytics systems of single source urban data [5], [27]. For
instance, taxi trajectories and movement data have been used
for road evaluation [38], discovering significant places [3] and
traffic analysis [40]. Other work has explored the correlation
between traffic cell patterns and link/route flow patterns [41],
and public utility data has been used for analyzing service
performance [44] and crowd movement patterns [42]. Our system
allows visual analysis via a drag-and-drop based interface that
supports interactive visual queries and exploration over cross
domains data.
Visual Reasoning: Another essential component of visual
analysis is visual reasoning [14] to establish and verify facts and
justify practices based on visually communicated information.
With the rapid increase of urban data, there is a dire need
for visual reasoning tools for large-scale urban data. Recent
work [37], [47] has focused on visual reasoning as a classification
problem and employs data mining techniques to optimize the
classification objective. For instance, Arietta et al. [6] propose
a novel technique for automatically identifying and validating
predictive relationships between the visual appearance of a city
and its non-visual attributes (e.g., crime statistics, housing prices,
population density, etc.). Alternatively, we can regard reasoning as
a deduction process based on a knowledge graph representation [7]
where the objects are encoded as nodes and the edges represent
their relationships [35]. Visual reasoning through a large-scale
graph representation can be efficiently accomplished by interactive
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network navigation [10]. A recently developed visual query
system [33] supports the flexible exploration of a single data
source by interactively constructing queries as visual hypergraphs.
Compared to classifiers that tackle one specific task, the graph
based representation enables querying over a large constructed
knowledge base and can potentially answer more complicated
questions. In contrast to these approaches, our visual analysis
work focuses on multi-source data, incorporating a wide range
of heterogeneous information, allowing us to answer a diverse set
of visual queries. In many cases, we need to harness a diverse set
of data sources (e.g., human mobility data, road networks, social
networks, etc.) to improve visual reasoning.

3 THE VAUD DATA QUERY MODEL

3.1 Data Description
To demonstrate the efficacy of our system, this paper focuses on a
real urban dataset collected from Jan. 10, 2014 to Jan. 31, 2014 in
a city with 14 million citizens. The dataset contains the following
information:

• Geographical data: A road network of the city from
OpenStreet Map [19] containing 34,997 nodes and 3,794
segments with a total length of 4,524 km.

• Points of Interests (POIs) data: The information of 938,712
POI locations where each record contains the longitude,
latitude, name, and functionality of a structure in the urban
environment (e.g., shopping malls, restaurants).

• Street view data: Street view data has been downloaded
from the Baidu map service to provide linked imagery of
locations.

• Real estate data: 5,684 estate records in residential
sub-districts where each record contains the name,
longitude, latitude, sales price, and the year that the
building was constructed.

• Mobile phone location data: 308 billion location records
of 7 million anonymized mobile phone users (around 50%
of the population in the city) where each record contains
an anonymous User ID, a cell tower ID, and a time stamp.
The location accuracy is 100- to 5000- meters depending
on the cell tower coverage in the area, and the regional
functionality of each cell tower location is also provided.

• Social network data: 27 million mobile phone call records
among 7 million users with each record containing two
anonymous user IDs and a time stamp. A social network
is also extracted from the call records.

• Microblog data: 93,491 posts of a popular microblog
website whose geotags fall inside the city boundaries. Each
record contains textual information, a time stamp, and a
geotag (when available).

• Taxi GPS trajectory data: 272,470,343 trajectory records
for 3,691 taxis recorded every 20 seconds where each
record contains a taxi ID, a GPS location, the speed,
the occupancy status, and a time stamp. On average, one
million trips are recorded each day.

• Taxi profile data: The detailed information of all 3,691
taxis where each record contains the taxi ID, the taxi
driver’s traffic records, and the affiliated taxi company.

3.2 Data Representation
While it is straightforward to apply a spatial relational database
model [34] to heterogeneous urban data, our goal is to manage data

objects (e.g., persons, cars, places, events) and the connections
between the objects that can be inferred when using multiple
data sources. The most frequent and important relationships may
be derived from the spatio-temporal interconnectedness of the
multiple data sources. Thus, space and time must be considered as
first class entities that can provide a rich source of new capabilities
for analyzing urban data. While spatio-temporal information can
be stored in various forms and at various levels, relational support
to use this information in analyzing urban data is lacking. In
our proposed framework, the geographical and time-oriented
properties of objects should be normalized into a canonical space
so that objects can be related by shared locations and time. In this
way, a set of heterogeneous urban data can be represented with
two classes of representations: object-based and space-time-cube
based.
Object based: A list of objects can be extracted from each type
of urban data, like the users from the mobile phone location data
or the taxi drivers from the taxi GPS data. Each object consists of
four distinct attributes: Identification Attributes (which), Spatial
attributes (where), Temporal attributes (when), and Descriptive
attributes (what):

1) Identification Attributes contain information which
identifies the object, such as the user name, the taxi ID,
or phone number.

2) Spatial Attributes contain the spatial information of an
object, such as the latitude and longitude or street address.

3) Temporal Attributes contain the temporal attributes
associated with an object, such as a date or a period of
time.

4) Descriptive Attributes contain the descriptive
information associated with an object, such as the
age, speed, or direction.

In addition, there are direct or indirect relations among different
types of objects. Some relations can be pre-built and retrieved
during runtime, such as the social network from the mobile phone
call data. Alternatively, some relations are generated on-the-fly
during the analysis process, such as the riding experience of a taxi
driver and a passenger, as demonstrated in the first case study.
Space-time-cube based: We leverage the space-time-cube
(STC) [22] as the canonical space for accommodating
spatio-temporal objects. Specifically, we split the entire time
period of the urban data into slices (e.g., days). We construct
an STC for each time slice and uniformly subdivide the STC
into a 3D grid for a given resolution, where the resolution is
determined based on the analysis tasks. As such, a cell of the
STC refers to a geographical location and a time interval in the
time slice associated with the STC. Finally, we sequentially relate
records of each object into an STC cell by leveraging the time
stamp and location information. A reference to the object is then
recorded in the cell. The spatio-temporal data and associated STCs
(Figure 1) support fast querying of spatio-temporal information
and facilitate indirect connections of objects by means of the
spatial-temporal interconnectedness. Other data types, e.g. POI
data, have no temporal information and do not fit in an STC. We
store such data in a database and build indexes on the spatial
attributes to support fast queries.

3.3 The VAUD Query Model
The VAUD query model has been designed to enable cross-domain
queries and data fusion. In order to enable clear query
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Fig. 1. Representing two cars and a person with STCs. STCs employ
a 3D grid where each voxel stores some part of the data, and time is
represented along the Z -axis where the X and Y axes represent the
geographical space. Records of each object are related into an STC cell
by leveraging the time stamp and location information.

Fig. 2. Illustration of (a) an atomic query and (b) an extraction.

specification, we split all queries into a series of atomic
expressions. An atomic query (Figure 2 (a)) is composed of
three components: a query condition, a query operation, and
query results. The condition is a combination of four component
constraints (which, when, where, what). The query results are a
set of records that fit the query conditions. The data source of the
objects is encoded as a subscription, e.g., ob ject1 means that it is
from dataset 1. The query operation is encoded with a directional
arrow→. For instance, Equation 1 denotes a query Q that retrieves
objects that appear in a location from dataset 1. A combination
can be a union, an intersection, or a complement. First, we use
the symbol “,” between condition A and B to represent union,
e.g., objects that satisfy A or B. Equation 2 denotes a query Q that
searches for objects which appear in a location or move in a period
of time from dataset 2. Likewise, the intersection returns objects
that meet the condition A and condition B and can be represented
by assigning “+” between A and B. For instance, Equation 3
denotes a query Q that retrieves objects that appear in a location
in a certain time period from the dataset 1.

Q = where→ ob jects1 (1)

Q = when,where→ ob jects2 (2)

Q = when+where→ ob jects1 (3)

Fig. 3. Illustration of a query sequence that is composed of a set of (a)
query operations and (b) extraction operations.

An extraction (Figure 2 (b)) is composed of three components,
the query results, an extraction operation, and a component of the
object. An extraction indicates that a component is to be extracted
from the object. The extraction operation is encoded with a dashed
directional arrow and is represented with the symbol π in the
expression. The symbol πiob ject is used to denote a component i
which is extracted from the object, where the subscript refers to
the type of component. The extracted components can be used as
a new atomic query condition. For example, πwhichob ject denotes
the which element (Identification Attributes) of the object.

By assembling an atomic query and extraction, comprehensive
query operations can be executed to perform complicated tasks. A
query sequence consists of a series of atomic query and extract
operations which connect end-to-end. Typically, a query sequence
represents the analytical process of analysts. For example, if the
analyst wants to find who rode a taxi that passed the central square,
the analyst creates a query sequence that consists of three atomic
operations and three extraction operations. First, the analyst needs
to locate the central square, so the which→ ob jectPOI expression is
needed, where “which” contains the “id=center square” condition,
and the data source is the POI dataset. Once the position of the
central square has been identified, the analyst can then specify
a where → ob jectTaxi expression to find taxis that pass the
central square. After carefully studying all resulting candidates,
the analyst determines which car best matches the specified
query condition. Finally the analyst performs the expression
where + when→ ob jectPerson, in which “where+when” denotes
a spatio-temporal query of the taxi trajectory. This is needed to
find the persons who rode in the taxi. The aforementioned process
can be summarized as a query sequence presented in (Figure 3).

Note that the queries in our approach can be performed across
different data sources by leveraging the spatio-temporal and social
inter-connectedness. Only one data source is used in each atomic
query operation. Complicated query tasks can be regarded as a
boolean combination of a list of atomic query operations. Here,
we list the representative query modes:

• Query in a data source: When using a single data
source, our model is the same as the one proposed in
Ferreira et al, [15]. Thus, our model naturally supports
when + where → ob ject, ((πwhich(when → ob ject) ∩
πwhich(where→ ob ject))→ ob ject) and other tasks, such
as origin-destination queries.
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• Origin-destination (OD) query: An OD query collects
all objects that move from an origin to a destination
in a data source and can be represented as Qod =
(πwhich(whereo + wheno → ob ject1) ∩ πwhich(whered +
whend → ob ject1))→ ob ject1.

• Multi-source Query: A multi-source query can be
executed by employing a query sequence in which each
query works on a single data source. A typical task is to
find objects in data source 1 that matches the time period
and the location that overlap with object E in data source 2
occurs: Q1 = (πwhereob jectE +πwhenob jectE)→ ob ject2.
Likewise, we may want to match objects in data source 1
and data source 2 by time and location. For instance, the
query of finding a person P and a taxi rode by the person
can be determined by querying from a taxi trajectory
dataset and a mobile phone location dataset: Q2 =
(∩N

1 πwhich((πwhereob jectP + πwhenob jectP) → ob jectcar)),
where N denotes the count of co-occuring data points from
the two trajectories.

4 SYSTEM

The VAUD interface, Figure 4, consists of two main views:
a scene view that shows the situational information as well
as the properties of selected objects, and a query view that
supports visual reasoning with intuitive drag-and-drop based user
interactions.

4.1 The Query View
The query view (Figure 4 (b)) uses a flow metaphor to
support the construction of cross-domain query tasks by means
of drag-and-drop interactions. The flow metaphor represents
the process of the analysis (specifying the query conditions,
performing querying, analysing the result, extracting conditions
and performing new querying).

We design two-tuple nodes and a directed Beziér curve
representation to encode and organize components of a flow
metaphor. The interface keeps a historical action list to record the
user’s operations and an information panel to show an overview
of data from each dataset.

Combination type

Remove a conditionDetail button

Details

Fig. 5. Visual design for the condition node.

The condition node allows the analyst to specify query conditions
and data sources (Figure 5). For example, the analyst selects a
data source “car” and an entry “id=T0230” as the query condition.
Selected conditions are displayed on the filter panel. In addition,

the analyst can view the condition details by clicking the detail
button, and defining combination types for the conditions. Note
that the default combination of selected conditions is union.
The result node presents the queried items and has a similar
visual design as the condition node. The name of each item is
automatically assigned by the system but can be modified by
the analyst. The analyst can select one, or multiple, items and
then view the information of selected elements in the the scene
view. The result node also includes a statistical chart to support
the detailed study of queried items, e.g., a histogram of speed
that indicates the traffic situation, or a heatmap that reveals the
geographical distribution of vehicles.

As the analysis becomes complex, both the condition node
and result node can be folded to get a concise interface. When the
condition node is folded, the widgets of the node and its icon are
filled with green color, while the color for the result node is white
(Figure 6). This color scheme is employed uniformally to match
the system color style and distinguish between two nodes.

Fig. 6. The node folding for (a) the condition node, and (b) the result
node.

The operations are encoded with directed links as arrows.
There are two types of operations: retrieving, which filters items
with given conditions, and reasoning, which enables user-driven
inference such as selecting a geo-tag of a blog post from the
scene view and setting it as a query condition. In the retrieving
operation, the link is modeled as a Beziér curve (Figure 7 (a)).
In the extracting operation, the link is represented with a dashed
Beziér curve (Figure 7 (b)).
The action list preserves built operations and the id of
corresponding nodes. The query condition is also preserved when
the analyst adds it to a new condition node. Similarly, a retrieving
operation is saved with its data source and associated nodes
(Figure 4 (c)).
The information panel presents an overview of the data from each
dataset. Attributes of data are displayed to show what information
is available. Data size and distribution are also preserved to help
analysts understand the characteristics of the data.

4.2 The Scene View
In the scene view, the road network data is displayed as a list of
geometric line primitives. The map and a time control (Figure 4
(f)) are used to provide a visual guide to the constructed STCs. A
point of interest (POI), such as a bookstore, school or a shopping
mall, is shown with a representative glyph (Figure 4 (e)). The
time-varying location information, such as a GPS or mobile phone
trajectory, is encoded with polylines.

The scene view keeps a scene list to manage the objects shown
on the scene view (Figure 4 (d)). The analyst can freely add
objects to the scene list by dragging and dropping objects from the
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(a)

(b)

(d)(f)

(e)

The action list

(c)

Scene List

Citizens of the village

Taxis

POIs

The posts

The villagesCondition: cheap
priced

Condition: “lost”

A street

Yunding village

Condition: Songtai
Square

Yunding village

Select All

Select All

Results                  Analysis

Results                  Analysis

Results                  Analysis

Extract address
Lucheng area
Price : 15000
Space : 247.37

Yunding village
lon : 120.67459
lat : 28.01371

@Red Lip
date : 2014-01-14

time : 00:50

POIs
number : 933

T0506
speed : 28km/h

Riding duration : 16h17min
Duration with passengers :

 14h36min

T0506
Extract a point on the trajectory

The statistical graph of speed

The statistical graph of speed

Fig. 4. The interface of VAUD. (a) The scene view. (b) The query view. (c) The action list. (d) The scene list. (e) The icon and its details of a
geographical object. (f) The time control.

Fig. 7. Visual design for the query operations. (a) A retrieving operator.
(b) A extracting operator.

result nodes. When an object is selected from the result nodes, its
detailed information is shown in the corresponding visualization
scheme on top of the scene view. For different objects, we utilize
several different visual representations. For example, if the analyst
selects a microblog post from the scene view, the user ID, the text,
and the date entry are shown respectively. If a taxi is identified in
the scene view, information on the taxi, the time interval specified
in the time selector, and the trajectory information are shown. We
have also developed specialized widgets to help the analyst. For
instance, the time line slider is used to explore the trajectory of
a person, and the statistical chart shows the distribution of the
selected data.
The comparison panel supports the comparison of selected
statistical graphs from the scene view. Once a statistical graph
of an object is selected, the graph will be added to the comparison
panel to help analysts compare with other graphs.

4.3 User Interactions

In order to perform a query task, three steps need to be performed:
selecting the data source, specifying the condition, and querying
the operation. To help the analyst explore the data and infer
facts from heterogeneous data sources, drag-and-drop based user
interactions are provided.

Manipulating nodes: The analyst can create a node by
moving a node onto the query view. The position of the nodes can
be freely specified by the users. Conceptually, folding or unfolding
a node is triggered when a double click takes place. The analyst
can rename the node, e.g., “origin-car” can be used to denote a
node that is used to find a car passing the origin.

Specifying conditions: The analyst sets a query condition by
first adding a node in the query view and then specifying the
detailed conditions. There are three ways to specify the query
condition.

1) The analyst may enter a specific condition, for example,
to query the POI which is named “central square”, the
analyst inputs “central square” and clicks the search
button to specify id=“central square” to be a condition
(Figure 8 (a)).

2) A set of selection interactions are provided for different
data types, for example, the geographical region selection
can be used to define a rectangular region of the map to
be the “where” condition or a time-picker selection can
be used to specify the “when” type condition (Figure 8
(b)). Note that the time-picker selection supports both
selecting intervals along a time line model by time-picker
and cyclic time model by Time Wheel [12].

3) The analyst can specify a condition by dragging items
from the result node or from the scene view and dropping
them into the condition node (Figure 8 (c)).

Boolean operations can also be applied to the conditions once they
are selected.

Exploring results: The analyst is able to select one or
more objects from the result node and place these in the scene
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Results                       AnalysisResults 

SEARCH SEARCH

Condition Node Taxis Taxis Scene List

Which  When  Where  What Which  When  Where  What Which  When  Where  What

Location

Condition List

(d) (e) (f)(c)(b)(a)

Select All

T2390

T1689

T1237

T1323

Condition Node Condition Node

Fig. 8. User interactions. (a) Text input. (b) Item selection. (c) Selection from results; (d) Add an object to the map. (e) View object details. (f) Visual
inspection.

TABLE 1
Visual forms supported in our interface

Data types Forms
Taxi GPS data Line chart: Time durations over speed

Heatmap : Geographic distribution of taxis
Bar chart: Time duration of riding and time
duration of occupancy in minutes

Mobile phone location data Heatmap: Geographic distribution of users
Microblog data Heatmap: Geographic distribution of posts

Line chart: Number of posts over time
Real estate data Scatter plot: Price and count of real estate
POIs data Heatmap: The geographic distribution of POIs

Bar chart: The statistics of POIs over type
Social network data Graph: force directed graph of calling network

view (Figure 8 (d)). The analyst can pan and zoom to explore
details in the scene view. Furthermore, an analyst can explore
detailed information by clicking an object (Figure 8 (e)). Several
visualization forms have also been implemented as listed in
Table 1 (please refer to the video demo for details). The result
node also provides an analysis panel to illustrate the query item
characteristics (Figure 8 (f)).

4.4 Data Processing Details

Data preprocess: The locations of each mobile user are recorded
with respect to the cell towers their phones’ access. As such,
their geographical locations are relatively inaccurate, and a set
of data preprocessing operations, including ping-pong effect
removal, noise removal, duplication removal and missing value
completion, are performed. Note that the taxi GPS trajectories
have a much higher accuracy than the mobile phone data. The
social network links are also extracted from the mobile phone call
records. Specifically, a call detail record (CDR) is a data record
containing the phone numbers of both users, the start time, and the
duration of the call. A graph structure that denotes the inter-user
relationships among mobile phone users is extracted based on the
communication network of the mobile phone call records. The
social media information comes from a Microblog web service.
The street view of locations in the city are linked to Baidu map
services. Similarly, the POI dataset is downloaded from an online
location-based service provider. The mobile phone location data
and the taxi trajectories are spatio-temporal and are stored as a list
of pairs of time and locations.

The use of mobile phone location data has an accuracy of
0.5 km depending on the cell tower coverage in the area. The
average accuracy is 0.269 km, 86.96% are below 0.5 km. As
the locations of the cell towers are provided, when performing
a spatial query over mobile phone location data, we first find cell

towers in the condition region, then put mobile phones linked to
the cell towers as query result. Although the queried locations
are coarse-grained, they do provide adequate information for
locating a mobile phone in general dense urban regions. With
spatially fine-grained data like taxi trajectory data, this inaccuracy
can be compensated by cross-linking multiple data sources, as
demonstrated in Section 5.1.
Data storage: To enable cross-domain analysis by leveraging the
spatio-temporal inter-connectedness, we build a sequence of STCs
for spatio-temporal objects. In our implementation, the time period
is sliced on the basis of days. The STC sequence contains 22 items
over 22 days data. The resolution of an STC for one day is 300 ×
300 × 1440, where 300 denotes the resolution along the longitude
and latitude, and 1440 denotes a time interval of 1 minute. We
choose 300 × 300 because our data covers a city. If we divide
this city into 300 × 300 regions, each region will approximately
cover a single street block. During the process of analysis, spatial
restrictions are always beyond or equal to a street block. Note
that each constructed STC is structurally sparse because there are
many empty cells that are not covered by spatio-temporal objects.
For example, an STC for the trajectories of 1 million persons in
one day has 73.16% of its cells empty.

The average memory consumption of an STC is 5Gb.
Therefore, the total consumption for 22 STCs is about 110Gb.
We store all STCs individually in the harddisk and construct a
spatio-temporal index structure to accelerate the online query. The
indices store pointers to the 3D cell locations of each STC and can
be used to quickly retrieve objects on a specific cell (a location and
a time point). To further enable on-the-fly query of objects and
associated attributes, we store the data of all objects individually
as files in the harddisk and construct an array of pointers to the
files.

The memory consumption for the two index structures (STC
based and object based) is about 100Mb. During runtime, our
system loads two index structures and supports on-the-fly querying
from both the STC based representation and the object based
representation. The performance achieves interactive rates in our
experiments.

5 CASE STUDIES

The experimental platform is an Intel Xeon ES430 2.66 GHz
desktop that is configured with 16 GB of main memory. Our case
studies were designed based on the interviews with several experts
in city planning and public security and bilateral collaborations
over one year. We designed and performed several case studies for
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Fig. 9. (a) The analyst inputs “lost” as the keyword and performs a query over a Microblog dataset. The analyst explores the queried Microblog posts
and identifies a post in which an occupant described the loss of her iphone while taking a taxi. The post contains the time and location of the origin
and destination of the taxi ride. (b) The analyst identifies the origin and destination geo-coordinates by searching the location-description-tags of
the origin and destination of the taxi ride from the post. (c) Based on this information, the analyst interactively queries taxis that were near the points
of interest near the times noted in the blog post. The analyst carefully studies the trajectories of each taxi in the scene view and identifies a taxi
which drives a passenger from SongTai square to BaiHuaYuan. It is deduced by the analyst to be the one taken by the writer. (d) Next, to further
refine the search, the analyst finds the phone numbers of the identified taxi drivers by performing a spatio-temporal query over the mobile phone
location dataset. Finally, the analyst compares the trajectory of the taxi and the phones and confirms the phone number of the taxi driver who can
then be contacted to retrieve the missing phone.

various analysis tasks. Note that our emphasis is on the efficiency
of visual analysis and reasoning features. Please refer to the
supplementary video for more details.

5.1 Case 1: Finding the lost phone
Our first case study explores the retrieval of a lost iPhone as a
demonstration of how multiple datasets can be linked to explore
information that would not be captured in a single dataset alone.
Figure 9 illustrates the query procedures that are designed to locate
the missing phone using seven critical steps.

1) The analyst chooses to explore the MicroBlog posts and
focuses on seeing what items have recently been noted
as missing in the city. The analyst inputs “lost” as the
keyword in a new condition node and then selects the
Microblog dataset as the source and performs the query
(Figure 9 (a)). The analyst explores the query results
and notices an interesting post from 00:49 am. The post
describes losing an iPhone: the blog writer took a taxi
from SongTai Square to BaiHuaYuan early that morning
and later realized she had misplaced her phone between
leaving her home and arriving at her destination. She
believed she dropped her phone in the taxi.

2) Given that she rode in a taxi and that the origin
and destination (SongTai Square and BaiHuaYuan) were
provided in the blog, the analyst believes that the
taxi cab can be identified and contacted to see if
the blog writer left her phone in the car. To get
the origin and destination geo-coordinates, the analyst

performs a which→ ob jectPOI query where “which” is
the location-description-tags of the origin and destination
of the taxi ride from the post (Figure 9 (b)). In this way,
the points-of-interest (SongTai Square and BaiHuaYuan)
can be transformed into geo-coordinates. The analyst
browses the Street view of SongTai Square and finds that
it is a tourist attraction.

3) The Origin-Destination (OD) from the POI dataset gives
latitude and longitude, and the blog post provides a
time of day. Next, to locate taxis that are near the
points of interest in the early morning, an OD query
∩2

i=1(wherei +wheni)→ ob jectTaxi is performed against
the taxi’s trajectory data to locate potential taxis the blog
writer may have ridden in (Figure 9 (c)).

4) A set of taxis the writer potentially rode in is detected.
The analyst carefully studies the trajectories of each taxi
in the scene view and identifies a taxi which takes a
passenger from SongTai square to BaiHuaYuan. It is
deduced by the analyst to be the one taken by the writer.

5) The analyst then wants to find the phone number of
the taxi driver. The analyst locates three points on
the taxi’s trajectory and performs a spatio-temporal
query ∩3

i=1(πwhere pointi + πwhen pointi) →
ob jectMobilePhoneLocation over the mobile phone location
dataset by matching the trajectories of the taxi and the
mobile phones (Figure 9 (d)).

6) Finally, the analyst compares the trajectory of the taxi
and the mobile phone and identifies the phone number of
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Fig. 10. The second case study analyzes a traffic jam. (a) The analyst identifies two primary streets that appear to have a large amount of
congestion. (b) The analyst explores POIs near the first street and finds that the first street has many automotive service shops where taxis are
going for maintenance in the afternoon. (c) The analyst explores POIs near the second street and finds that the second street is next to a commercial
centre as its surrounding POIs are almost all retail stores. (d) The analyst studies when the congestion begins and ends.

the taxi driver who can then be contacted to ask if a cell
phone was left in the car.

In this case, the analyst queries from the MicroBlog data, POI
data, taxi trajectory data, and mobile phone location data. The
analyst successfully reviews a case of “lost-phone” and finally
helps the MicroBlog writer find the phone number of the taxi
driver through OD queries, trajectory matching, and a series of
multi-source heterogeneous queries.

5.2 Case 2: Analyzing a traffic jam

While the first case study demonstrates how linking multiple data
sources can provide hidden information, we can also use such data
to aid in urban planning and design. In this case study, the analyst
wants to explore traffic flows and patterns, specifically focusing
on congestion and traffic jams. Here (Figure 10), a series of four
queries were developed to explore traffic congestion.

1) First, to identify where traffic jams are most likely to
occur, the analyst preforms a what + when + where →
ob jectTaxi where “what” is the speed range “0-20 km/h”
and “during 12:00-20:00 2014-1-16” is a single day of
the week (Figure 10 (a)). The analyst carefully checks
the heatmap view of the taxi trajectories and notices two
primary streets that appear to have a large amount of
congestion.

2) To explore what might be causing the congestion, the
analyst does a where→ ob jectPOI to see what businesses
or other city structures are located in the nearby areas.
The analyst finds that the first street that appears
congested has many automotive service shops where taxis
are going for maintenance in the afternoon (Figure 10
(b)). The second street is next to a commercial centre as
its surrounding POIs are almost all retail stores (Figure 10
(c)).

3) The analyst wants to know more about the second
street’s traffic situation, specifically when the congestion
begins and ends. The analyst performs a where+when→
ob jectTaxi for taxis passing the major intersection, during
“2014-1-16 12:00-21:00” (Figure 10 (d)).

4) The analyst then studies the statistical graph of speed
returned by the query and observes that the street is still
crowded from 12:00 to 19:00 pm with the assistance of
the Compare panel.

Case 2 analyzes traffic flows via different statistical graphs
and heat maps which demonstrates that our system helps analysts
observe distributions of data and multiple types of information
across the city.

5.3 Case 3: Comparing the daily lives of humans

We can also use our system to compare and contrast the everyday
lives of different citizens. In this case study, the analyst explores
the world of two groups of people who live in different villages
(Figure 11):

1) First, the analyst queries from the real estate dataset
by using the house price as a query condition and
identifies two villages characterized by high and cheap
housing prices respectively (Figure 11 (a)). The analyst
identifies a high-priced village located in downtown and
a cheap-priced village located in suburbs to compare the
differences about these two kinds of villages. The analyst
browses the street view and finds that the high-priced
village is with high-rise buildings and a river, besides,
the cheap village is with mid-rise buildings and nearby a
expressway.

2) For each village, the analyst identifies citizens
of the villages by performing where + when →
ob jectMobilePhoneLocation queries in the mobile phone
location dataset (Figure 11 (b)). The “when” condition
is set to be in the time period from [0:00 am, 6:00 am
from Jan. 1st to 7th] to ensure that the queried persons
live in the villages.

3) The analyst studies the trajectories of two groups of
citizens respectively and finds that these individuals live
in cheap apartment works in downtown and southwest of
the city and have large scale trajectories. In contrast, all
the citizens in the high-priced village seem to work in
downtown.
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Fig. 11. The third case study seeks to study human mobility patterns. (a) The analyst identifies two villages characterized by high and cheap housing
prices that located in downtown and suburbs respectively. The analyst browses the street view and identifies citizens of the villages. (b) The analyst
observes the trajectories of two group of citizens and finds that these individuals live in cheap apartments and work in downtown and southwest
of the city. In contrast, all the citizens in the high-priced village seem to work in downtown. (c) For each group of citizens, the analyst queries their
social network and finds that citizens in the high-price village appear to have more social connections than those in the cheap village (d) The analyst
studies the POIs near the two villages.

4) For each group, the analyst queries their social network
from the social network dataset by means of which→
ob jectSocialNetwork queries (Figure 11 (c)). The analyst
finds that the persons in the high-price village have more
social connections than those in the cheap village.

5) The analyst then queries POIs from the POI dataset by
using where + when → ob jectPOI queries respectively,
in which where is the neighbors of the two villages
(Figure 11 (d)). The analyst studies the queried POIs
and finds that the POIs associated with the cheap
village’s neighborhood are factory-related. In contrast,
the high-priced village is located in a commercial streets.

We use Case 3 to analyze the behaviors of people and
compares the daily lives of two groups of citizens who live in
different villages. The distribution of POI types and social network
graphs effectively show different kinds of life styles in the city.

6 USER STUDY

We performed a user study with 14 CS students (3 females and
11 males, ages 20 to 30) to evaluate whether our system is
helpful in analyzing cross-domain urban data. First, we introduced
our interface to the participants and showed a case study with
a 3-minutes video to explain our query workflow. Then, our
participants were asked to use our system to analyze real urban
data described in Section 3. The user-study tasks were:

• T1: Find the harbor named “AnLanTing”. During T1,
QT1 = which → ob jectPOI should be preformed where
“which” represents “AnLanTing”.

• T2: Analyze the traffic situation that occurred in the
morning on January 10 and locate the most congested
crossing around the harbor. In this task, participants should
perform a QT2 = (πwhere(ob jectPOI)∩when)→ ob jectTaxi
and check the heatmap view of the taxi trajectories.

• T3: Find major architectural types surrounding the harbor
using the POI and blog data. Desired queries could be
represented as QT3a = πwhere(ob jectPOI)→ ob jectBlog and
QT3b = πwhere(ob jectPOI)→ ob jectPOI .

These tasks were designed to analyze how a user selects different
types of conditions to query cross-domain urban data. In addition,
multiple types of visualizations are needed to assist the analyst in
obtaining information from the multi source data. Moreover, these
three tasks have ground truth so that we can compute the accuracy
rate of each task. After completing the tasks, the participants were
asked to evaluate our system with respect to three aspects:

• A1: The importance of knowing all the attributes of the
data.

• A2: The convenience of our system for querying
cross-domain urban data.

• A3: The effectiveness of our visualizations of
cross-domain urban data.

For each aspect, subjects were assigned a grade of “Poor”,
“Average”, “Good”, or “Very Good”.

Figure 12(a) shows the accuracy of the three tasks. All
participants found the correct answer to T1, while the accuracy
of T2 and T3 were 85.8% and 78.6% respectively. By analyzing
participant’s answer sheets, we identified several common
mistakes when they analyzed the urban data. The first mistake
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Fig. 12. The results of the user study. (a)The average accuracy of all
participants in T1, T2, T3. (b) Participants’ scores of the three aspects
using ratings of “Poor”, “Average”, “Good”, and “Very Good”

was that when they chose the surrounding region of the harbor, the
selected range was too large to accurately cover the neighboring
POI of the harbor. Meanwhile, some participants did not use the
heat maps of taxis to analyze the traffic situation thus wasting
lots of time. Moreover, participants always forgot to set temporal
restrictions which led to wrong results.

Figure 12(b) shows the grades of the three aspects evaluated
by the participants. Many participants considered the structure of
each dataset as necessary information, while the others thought
it was somewhat helpful but not necessary. Most participants
were satisfied with our system while two participants want us to
improve interactions on condition selection and visual encoding to
help guide the analysis of urban data.

Along with the user study, we also interviewed participants
about the pros and cons of our system. All participants stated
that our system would be useful for urban data visual analysis,
and our user study demonstrated that most of the participants
could effectively complete common urban analytic tasks with
our system. Some key quotes from the interviews include: “The
system shows orderly information to help me analyze the tasks.
It is necessary to list all attributes of each urban dataset in the
information table, which can assist in querying information;” “The
system is well designed and the interactions are simple and easy
to understand,” and; “It is convenient to query cross-domain urban
data in a unified query interface.”

In addition, we also solicited comments from the participants
with respect to the user interactions, analysis process, and
visualization performance. The participants provided many
reasonable suggestions for improvement. “Some of the
interactions are not reasonable, such as when I choose a condition,
I must click the ‘OK’ button which interrupts the flow of the
analysis.” “It is confusing when selecting ‘which’ or ‘what’
condition, I don’t know what exact information they represent.”

Users also noted that they wanted specific guidance about data
fields and information to help them in their analysis. “I often don’t
know what to do next. If there are some information prompts
to help me choose the direction of analysis, the system will be
better.” One participant also noted issues with the performance
of the rendering parts. “The system provides a fast query of
urban data. However, as the data size increases, rendering and
interaction with the data become slower.” Such comments indicate
the need for more research into a combination of intelligent
tutoring and visualization and even further research into how to
generate performance increasing for exploring large urban data.

Additionally, we interviewed several domain experts from the
traffic safety field and the urban planning field after using our
system. We asked them to analyze the traffic jam problem using
our system and provide feedback. Overall, the experts had a great
interest in visual analysis over cross domain urban data: “Cross

domain data provides huge amounts of information about our
city. I think this system is a good application to visualize cross
domain data. Their query model fits with the reasoning procedure
we usually use. One can analyze urban data step by step and get
information about whatever you want.” While our system deals
with off-line data, experts suggested that we could deploy VAUD
on real time data. “VAUD can be used to cope with event analysis,
policy making, etc. If it is able to deal with streaming data, it will
be useful in a City Surveillance System.”

7 DISCUSSION AND FUTURE WORK

In this paper, we present VAUD, a visual analysis framework for
exploring and understanding heterogeneous urban data. A visually
assisted query model is introduced as a foundation for interactive
exploration coupled with simple, yet powerful, structural
abstractions and reasoning functionalities. By leveraging the
spatio-temporal and social inter-connectedness, VAUD achieves
high efficiency in terms of storage, query and analysis. VAUD
extends conventional visual analytics approaches for citywide
urban data to the cyber-physical-social system context and
empowers users by allowing for interactive multi-source querying
from real-time social and physical data. The implemented system
enables geo-spatial, social-network, temporal, statistical, and
structured and unstructured analysis, providing a context-rich
analytic experience for users. The case studies and user studies
demonstrate the unique capabilities of our approach.

For future work, we plan to research automatic algorithms
that can recommend potential analysis directions of urban data
exploration. We also intend to design flexible interactions to help
analyst select query conditions. Last but not least, we will focus
on handling streaming data within our system, which requires an
efficient way of representing and transferring the online data into
our visual analysis pipeline.
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