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location2vec: a situation-aware representation for
visual exploration of urban locations

Minfeng Zhu, Wei Chen, Jiazhi Xia, Yuxin Ma, Yankong Zhang, Yuetong Luo, Zhaosong Huang, Liangjun Liu

Abstract—Understanding the relationship between urban loca-
tions is an essential task in urban planning and transportation
management. Whereas prior works have focused on studying
urban locations by aggregating location-based properties, our
scheme preserves the mutual influence between urban locations
and mobility behavior, and thereby enables situation-aware
exploration of urban regions. By leveraging word embedding
techniques, we encode urban locations with a vectorized rep-
resentation while retaining situational awareness. Specifically,
we design a spatial embedding algorithm that is precomputed
by incorporating the interactions between urban locations and
moving objects. To explore our proposed technique, we have
designed and implemented a web-based visual exploration system
that supports the comprehensive analysis of human mobility,
location functionality, and traffic assessment by leveraging the
proposed visual representation. Case studies demonstrate the
effectiveness of our approach.

Index Terms—Human mobility, word embedding, urban com-
puting, spatio-temporal data, visual exploration.

I. INTRODUCTION

DATA-DRIVEN urban computing approaches [1], [2], [3]
widely leverage the mobility data collected by location-

aware devices for discovering new insights across a variety of
application domains including human mobility, urban plan-
ning, transportation management, and epidemiology. These
applications commonly require a representation (e.g. flow
volume or population) to explore, analyze, or compare the
properties and dynamic behavior happening in distributed
locations. The situation-aware representation is defined as a
perception of information in the spatio-temporal of evolving
situations [4] (e.g., traffic control, extreme weather). In each
scenario, situation-aware representation of urban locations is
essential, for two reasons: first, the data of human mobility,
transportation management, and urban planning contains infor-
mation of urban locations; second, crowd, vehicles as well as
social networks move or change over time in different places,
and thereby a situation-aware representation of the locations
is needed to understand dynamic human mobility.

A large body of research has been engaged in the repre-
sentation and analysis of urban locations by fully exploring
the trajectories of moving objects [5], [6]. However, these
approaches simply utilize aggregated values from trajectories
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of vehicles or population, like locational density or in/out flow
between pairs of locations, for representing, visualizing and
analyzing locations. The mutual influence between urban lo-
cations and mobility behavior is still unexplored. For instance,
heatmap only encodes the number of persons in each location
and ignores the continuity of trajectory data.

We take an alternative perspective: motivated by the manner
in which a person visits places with distinctive purposes, we
analyze an urban location in its context which is defined as
the set of previous and successive locations in a trajectory.
Since trajectory data is a kind of sequential data, exploring
the functionality of a location through the context is anal-
ogous to understanding the meaning of a word within the
sentence. Therefore, we regard urban locations as basic words
and consider a trajectory as a document. We leverage the
surrounding contexts of locations to construct the situation-
aware representation of urban locations by employing the word
embedding technique (e.g., word2vec [7], [8]) which is widely
used in Natural Language Processing (NLP) tasks.

In this paper, we contribute a situation-aware representation
for urban location, called location2vec. First, we employ
the word2vec model to embed the urban locations into a
continuous vector space by incorporating the interaction be-
tween urban locations and moving objects. Second, to support
analyzing dynamic human mobility, we extend the word
embedding model to learn dynamic location representation
in the same vector space. We created two different artificial
trajectory datasets to test and justify the advantage of our
method over aggregated population flow. Figure 1(c) shows
the same aggregated population flow shared by two different
trajectory dataset A and B. Our representation shows that
the relationships among location 3, 4 and 5 are different for
two trajectory datasets. Since location 3, 4 and 5 serve as a
connection in trajectory dataset A, their location vectors are
close to each other in Figure 1(d). However, all trajectories
in dataset B turn back at location 4 (maybe a closed road for
real cases). Therefore, location 4 is far away from location 3
and 5 in vector space (see Figure 1(e)).

The location2vec representation encodes trajectory records
as spatio-temporal words to enable situation-aware analysis
of dynamic human mobility. Although the representation in
our approach is constructed from mobile phone location data,
other forms of mobility data like taxi trajectories can be used
too. We design and implement a visual exploration system
that supports a suite of exploration and analysis tasks. For
instance, by projecting the location vectors into a 2D plane, the
analyst can explore the relationship of location distribution in
the vector space. The analyst can query locations with the same
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Fig. 1. Our embedding algorithm learns a situation-aware representation
from trajectory data in two-dimensional space. Each location is encoded as
a circle with a number. The number nears each link indicates the aggregated
population flow. The relationships among locations are different for two
trajectory datasets, though the population flows are the same.

function based on the similarity in the vector space. Moreover,
the analyst can also explore the difference of context to analyze
the dissimilarity of two locations. Case studies on real-world
dataset demonstrate the effectiveness of our approach.

To summarize, this work presents two main contributions:
• A situation-aware location representation that character-

izes the mutual influence between locations and contex-
tual information;

• A visual analysis system that supports exploration and
analysis of socialized and mobilized urban locations.

II. RELATED WORK

A. Visual Analysis of Trajectory Data

A large number of visual analytics approaches have been
developed to study human mobility by using the trajectory
data [9]. Existing solutions can be roughly divided into two
categories. The first one emphasizes the connections among
locations in terms of mobility. For instance, a region is
characterized by the in/out population flow of individual
locations by mapping the aggregated taxi trajectories into
discrete locations [5]. The MobilityGraph [6] elegantly pre-
sented a new way to reduce massive flow clutter by means of
spatial and temporal simplifications. To eliminate the visual
clutter caused by the large size of movement traces, adaptive
hierarchical structure, alpha blending and edge splatting can be
employed [10]. Vrotsou et al. [11] simplified the complexity of
the trajectory structure by leveraging the attributes of trajectory
segments.

The second category leverages the detailed information of
trajectories to enhance the depiction of relations between
locations and human activity, e.g., a novel visual representation
that encodes human mobility and activity context simultane-
ously. TrajRank [12] focused on the dynamic change of travel
time along one route. Zeng et al. [3] explored the relationship

between human mobility and points of interest by extracting
check-in data provided by Foursquare. More recent work has
proposed the semantic analysis of trajectories for locating
billboards [13] and transforming trajectories into documents
to support text searches [14]. However, SemanticTraj [14]
focuses on searching trajectories by text, they cannot provide
deep insight into human behavior based on movement data.

Our work is different from the researches mentioned above.
Rather than directly using aggregate population flow, we char-
acterize the location with context information. Understanding
mobility behavior should be built upon context information
such as the purposes which a person visits places for.

B. Representation Through Word Embedding
Word embedding methods are widely employed to learn

dense vector representation of words in documents and lo-
cations in mobility data.

Document. Recently, distributed representation learning has
been successfully applied to Natural Language Processing.
Mikolov et al. [8] proposed the efficient word embedding
algorithm, word2vec. The word2vec algorithm represents each
word as a vector in a latent space on large-scale docu-
ment datasets. If two words frequently co-occur, they have
a tendency to share similar vectors. The word2vec algorithm
has been applied in various Natural Language Processing
(NLP) applications, such as machine translation and sentiment
analysis. Cite2vec [15] visualized the documents usage in
citation contexts via word2vec.

Mobility data. Researchers apply document modeling
method to learn representation from mobility data. Human
mobility and points of interests are used to discover region
functions in urban area [16]. Yu et al. [17] utilized the
relationship between locations computed by word2vec algo-
rithm for further traffic flow forecasting. For personalized
location recommendation, the latent representations of users
and locations are learned in the same latent space [18].
Further, POI2Vec [19] incorporated geographical influence
and word2vec to learn the POI representations for POI pre-
diction. However, POI2Vec learns a fixed representation and
neglects the dynamic change of crowd, vehicles as well as
social networks. Since we are interested in human mobility
rather than POI prediction, we introduce a dynamic location
representation based on word2vec to capture the dynamic
relationships among locations.

III. DATA

The Raw Data We employ a mobile trajectory data
provided by a mobile phone service company for building
the representation of urban locations. Our dataset includes
7 million mobile users in a city with 9 million residents.
Thus, the citywide mobility can only be modeled. The dataset
contains trajectory records of mobile phones and the infor-
mation of cell stations. Each record of a trajectory is defined
as tr = (pid, sid, t), where pid is the mobile phone ID, sid
denotes the ID of the cell station, and t is the time stamp.

Trajectory We employ the data cleaning process provided
by Wu et al. [20] to remove data noise. After data cleaning,
a trajectory is encoded as a sequence of records:
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Tr = {tr1, tr2, ..., trl} (1)

where tri = (pid, sid, ti) and l is the record number.
Location Specifically, the union of the covered zones of all

cell stations constitutes the entire urban area. The placement of
cell stations by mobile service providers considers the geogra-
phy, demography as well as the transportation. Meanwhile, the
trajectories of mobile phones are recorded as a series of cell
stations. Therefore, we regard the area covered by a mobile
cell station as a targeted location. The location is identified
by the ID of the corresponding cell station. In particular, the
information of a location (cell station) s contains its ID sid, its
geographic position (latitude, longitude), a textual descrip-
tion on its functionality (e.g., residence, business district).

Contextual Trajectory The context of a location implicates
its usage under mobile phone users’ visiting behaviors. Given a
trajectory of a user, we define contextual trajectory of location
s as the surrounding sequence of trajectory records:

CTr = {tri−m, ..., tri−1, tri, tri+1, ..., tri+m} (2)

where tri.sid = s.sid and m is the size of left/right window.
Left window contains the previously visited locations and right
window captures the successive locations that are visited after
location s. For instance, the contextual trajectory of location s
is {tri−2, tri−1, tri, tri+1, tri+2} in Figure 2, where tri.sid =
s.sid and window size m = 2.

time
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tr
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tr
i

tr
i+1

tr
i+2
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Fig. 2. An example of contextual trajectory. The subtrajectory in the
contextual window of a location is defined as a contextual trajectory.

IV. REPRESENTATION

A. Location2vec

Based on the above observations, we employ the well-
studied distributed representation learning [7] to generate
location vectors for urban locations. The location2vec repre-
sentation is constructed as follows.

1. Generating words We first transform the raw trajectory
data into trajectory documents. For each time interval (e.g.,
one hour in our implementation), a word is generated as
w = (sid, t) for a trajectory record tr = (pid, sid, t). For
instance, a raw trajectory record contains a location ID and a
time stamp, such as (sid :8676, 09:38:38.42). We transform it
into the spatial-temporal location formulation (8676,9), which
refers to the cell station 8676 at 9:00 AM.

2. Generating documents We encode each trajectory as a
document D = {wk, k = 1, 2, 3, ...}, which is composed of
a sequence of words. Each word refers to the location (cell
station) covered by the trajectory at the given time interval.

Given a document, we define the contextual words of word wi

as context(wi) = {wi−m, ..., wi−1, wi+l, ..., wi+m}, where m
is the size of the window.

3. The Skip-gram Model The object of the Skip-gram
model is maximizing the average log probability:

L =
∑
w∈C

log p(context(w)|w) (3)

where C is the collection of words in all documents and
context(w) is the contextual words of w whose size is 2m. We
slide a contextual window of length 2m+1 over the documents
to maximize the co-occurrence probability among the words
that appear within a window (see Figure 2). Suppose the
sequence of words is independent and identically distributed,
we are able to compute the probability for corresponding
contextual words given word w:

p(context(w)|w) =
∏

wc∈context(w)

p(wc|w)

where wc is one contextual word of w. We can compute the
probability p(wc|w) using softmax function:

p(wc|w) =
vTc vw∑

u∈W
vTu vw

where vc, vu and vw denote the vector of word wc, wu, w and
W is the set of all words.

4. Optimization Directly optimizing is time consuming,
because the computation complexity of p(wc|w) is O(|C|).
Negative sampling is proposed to improve the efficiency of
optimization [8]. For each word w, we sample K negative
words that do not belong to the contextual words context(w).
A logistic regression model is employed to classify w and
negative words. Thus, the object function is defined as:

L =
∑
w∈C

∑
x∈context(w)

[log σ(vTx vw)+

∑
wk∈NEG(w)

log(1− σ(vTk vw))]
(4)

where σ(x) = 1/(1+exp(−x)) and vx, vk and vw denote the
vector of word x, wk, w

5. Generating location vectors By optimizing the object
function on the collections of trajectory documents, a high-
dimensional vector of each word is generated. The similarity
between two vectors can be measured by the cosine distance
in the vector space:

Similarity(vi, vj) =
−→vi · −→vj

‖vi‖2 · ‖vj‖2
(5)

B. Features

We further characterize a set of features based on the
representation for efficient exploration and analysis. We define
the k-nearest neighbors (kNN) by the similarity in the vector
space, describe the flow direction, and measure the flow
volume from trajectory data.

k-Nearest Neighbors Usually, the neighbors of a location
implicate similar functionality. Word embedding method is
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applied to recommend locations by the similarity in prior
works [18], [21]. We compute the similarity as the cosine
distance in the vector space. We define kNN Nk(s, t) as the
set of k locations where people of location s at time t will
visit.

Intra-distance of kNN To describe the range in which an
individual of the location s at time t tends to move around,
we denote intra-distance of kNN as the distance to next
location. In practice, we compute the intra-distance of kNN,
Disk(s, t), as the average distance from location s to Nk(s, t)
in geographic space as:

Disk(s, t) =
1

k

k∑
i=1

distance(s, si), si ∈ Nk(s, t) (6)

where distance(s, si) indicates the distance between s and si.
Fractional Anisotropy We compute fractional anisotropy

(FA) to represent the degree to which trajectory records are
concentrated in one direction. FA is a scalar value derived from
diffusion tensor images and has been applied to describe the
diffusion anisotropy in organs [22]. High FA indicates neuron
fiber, because water molecules diffuse faster along the neuron
fiber direction than across it [23]. We compare mobile phone
users in urban networks to water molecules in organs. We
employ FA to characterize the geographical distribution of
k-Nearest Neighbors. Correspondingly, traffic routes, where
people usually travel in one direction, may have larger FA
value. We calculate a covariance matrix from the geographic
positions of Nk(s, t). We set the covariance matrix as a 2D
tensor for each location. We can generate two eigenvalues (λ1
and λ2) and corresponding eigenvectors from this 2D tensor.
FA on 2D tensor is computed as:

FA(s, t) =
√

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2√

λ21 + λ22
(7)

with λ̄ = (λ1 + λ2)/2, λ1 > λ2.
Flow Direction To reveal the direction where trajectory

records are concentrated, we set the eigenvector corresponding
to λ1 as the main flow direction of a location.

Flow Volume We calculate the total number of persons
visiting and leaving the location from trajectory data.

C. Visual Encoding
We propose several visual encodings to visualize the char-

acterized features of location2vec representation.
1) Visualizing the Vector Space: We apply a dimensional-

ity reduction technique (i.e., LargeVis [24]) to reduce high-
dimensional vector space to two-dimensional space to reveal
the global pattern of location vectors. As shown in Figure 7(a),
all locations are represented as dots in a specific time interval.
Closer locations express more similarity based on the cosine
distance in the vector space.

2) Visualizing the Features of Locations: To support the
exploration of location2vec representation, we propose a com-
pass glyph to present the summary of location features. As
shown in Figure 3, the orientation of the compass encodes the
flow direction and the length of the compass represents the
fractional anisotropy. The width of the excircle encodes the
intra-distance of kNN.

Fractional Anisotropy

and Flow Direction

Intra-distance of kNN

Fig. 3. The compass glyph encodes the fractional anisotropy, flow direction
and intra-distance of kNN of a location.
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Fig. 4. The kNN glyph is designed to show the geographical distribution of
Nk(s, t) and the flow volume in eight directions of center location s. The
color of locations in Nk(s, t) is encoded with similarity and the distance to
the center location s is scaled. We draw the equidistant line to illustrate the
geographical scaling. A radar graph is employed to show the flow volume
along 8 directions.

3) Visualizing the Location Neighbors: We design a glyph
to visualize the mobility information of a location. As shown
in Figure 4, the geographical distribution of Nk(s, t) and the
flow volume through location s are presented in the glyph.
The location s is presented as a dot and placed in the center
of the glyph. The other locations of Nk(s, t) are shown as dots
colored according to the degree of similarity to the location
s and placed according to their relative geographic position
to the centering location s . The coordinate (x, y) of location
si ∈ Nk(s, t) is computed as:

θ = tan−1
spi.latitude− sp.latitude

spi.longitude− sp.longitude

r = rmax∗ log10(9∗distance(si, s)/distancemax+1)

x = r ∗ cos(θ)
y = r ∗ sin(θ)

where sp.latitude and sp.longitude are the geographic
coordinates of location s, distance(si, s) indicates the ge-
ographical distance, rmax is the radius of the glyph and
distancemax is the longest distance from location s to location
si ∈ Nk(s) during all time intervals. The farthest location
is placed at the boundary of the glyph (r = rmax) when
distance(s, si) = distancemax. To illustrate the geograph-
ical scaling, we draw the line of equidistance at 0.25 ∗
distancemax, 0.50 ∗ distancemax and 0.75 ∗ distancemax.
The flow volume of each location is aggregated along eight
directions (e.g., north, northeast, east, etc.). They are illustrated
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with a radar graph. We connect the data value in each direction.
4) Visualizing Interconnections of Locations: We employ

a matrix to show the interconnection (e.g. flow volume and
similarity) among locations. As shown in Figure 5, each
cell in the matrix represents the interconnection between the
corresponding two locations. The color of the grid encodes the
similarity of two locations and the size of the circle encodes
the volume of traffic.
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Fig. 5. The matrix shows the interconnection between locations. The color
of the grid encodes the similarity of two locations and the size of the circle
encodes the volume of traffic.

D. Parameters

Dimensionality We aim to learn a compact representation
which facilitates the computation and storage. However, lower
dimensionality results in more information loss. We set the
embedding dimension to 100 which keeps the balance between
information preserving and compactness.

Window size Window size captures the co-occurrence of
locations. Levy et al. [25] concluded that larger window
tends to capture more topic information and smaller window
captures local syntactic contexts. We conduct an experiment
on our trajectory data with different sizes m of windows. In
Figure 6, we find that locations of N11(26722, 10) distribute
around the center location (ID:26722) when m = 3. With
larger windows size, locations of N11(26722, 10) are located
along the road nearby. In general, larger window captures
more mobility behaviors while smaller window reveals the
geographical similarity only. In our dataset, the average length
of trajectories in a day is 19. We set the window size m as 10
which captures location functionality from the daily mobility
in our experiments.

The number of neighbors When we compute intra-distance
of kNN and fractional anisotropy, larger k may result in global
pattern while smaller k captures local pattern. We set the
number of nearest neighbors k of kNN as 2m according to
the window size of location2vec model. Analysts can also
modulate the parameter k in our visual analysis system (V-B).

V. VISUAL ANALYSIS

A. Task Analysis

The location2vec representation inspires us with a new
perspective to explore the urban mobility. We summarize the
analysis tasks as follows.

T1. What are the global patterns of the location?
In general, the analyst is concerned with the geographical

(a) m=1 (b) m=10

(c) m=50 (d) m=100

Fig. 6. The distribution of N11(26722, 10) on the map with different window
size. The center location (ID:26722) is highlighted with red color. Larger
window captures more mobility behaviors while smaller window reveals the
geographical similarity only.

distribution of locations cooperating with the features, such as
the flow volume and flow direction. In addition, the spatial-
temporal distribution of location representation should be
able to present the global pattern of urban mobility, such as
periodicity, tendency or abnormality. Furthermore, exploring
the relationship between the global patterns in two spaces
can induce insight into the syntactic structure of the mobility-
aware representation.

T2. What is the mutual influence between urban loca-
tion and its contextual trajectory? Studying the interaction
between human mobility and location is one of our core
objectives. After exploring locations using nearest neighboring
locations in the vector space, the analyst want to know the
role of location under the context of human mobility, such as
which location will be visited by citizens and the purposes of
citizens’ visiting behaviors.

T3. What is the relationship among locations? The
analyst usually analyze the relationship between locations.
Does the similarities between locations keeps consistent or
not between the geographical space and vector space? What
are the similar properties among neighboring locations in the
vector space? How the relationship will change over time
due to citizens’ periodic behavior? The analyst would like to
visualize and reason this inconsistency and temporal variation
of relationship.

B. Visual Interface

To support the exploration of urban locations through loca-
tion2vec representation, we propose a visual interface which
consists of the characterized features (Section IV-B) and the
corresponding visual encodings (Section IV-C). The interface
contains a set of linked juxtaposed views (see Figure 7): an
embedding view, a flow volume view, a map view, a kNN
view, a matrix view and a configuration panel.

The Embedding View The embedding view shows the
global pattern of locations in the embedding space (T1). As
shown in Figure 7(a), we perform LargeVis [24], which is
faster than tSNE [26], to project the location vectors into a 2D



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. *, NO. *, AUGUST * 6

a

b

c

d

e

f

Low Volume

High Volume

Fig. 7. The interface for exploring and analyzing urban locations with the proposed representation. (a) The embedding view illustrates locations as points in
the embedding space. (b) The flow volume view shows the total flow volume through seven days of a specific location. (c) A geographical map overviews the
distribution and the principle flux of urban locations. (d) The kNN view encodes time-varying k-nearest neighbors of a location. (e) The matrix view presents
interconnections among locations. (f) The configuration panel offers parameter adjustment.

space and present them as dots. Lasso selection is supported
in the embedding view.

The Flow Volume View We employ the flow volume view
to show the total flow volume through seven days of a location
(Figure 7(b)). Every day is divided into 24 hours and each unit
reflects the flow volume in an hour.

The Map View As shown in Figure 7(c), the map view
provides an overview of the location distribution (T1). It
includes the geographic map and the compass glyph (Section
IV-C2). When a compass glyph is hovered, its ID, textual
description, intra-distance of kNN and fractional anisotropy
are shown. When a compass glyph (location) is selected, the
color of inner circle of its k-nearest neighbors represents the
similarity to the selected location. Additionally, it supports
the visualization of the contextual trajectory (T2). We apply a
heatmap to visualize contextual trajectories.

The kNN View In this view, we present the kNN glyphs
(Section IV-C3) for a urban location (T2). The glyphs are listed
by hours in a row (see Figure 7(d)). We create a glyph for
each time interval to show the detailed evolutionary history of
a location. The kNN view and the matrix view share the same
timeline (Figure 7(e)).

The Matrix View As shown in Figure 7(e), the matrix view
(Section IV-C4) presents interconnections among multiple
locations to reveal the temporal variation of relationship (T3).
After a location is selected in the map view, the matrix view
shows the relationship among the selected location and its 5-
nearest neighbors. The analyst can also brush the locations

they are interested in and study the relationship in the matrix
view. When the analyst hovers over one grid (circle) in
a matrix, values of similarity (flow volume) between two
locations is shown in a tooltip.

The following interactions are supported:

• Linking Dynamic querying is supported among the map
view, the embedding view, kNN view, and the node-link
view. For instance, the analyst can gain an overview in the
map view and select a location s. The map view shows
the geographical position of its kNN. The contextual
trajectories through location s are visualized by heat map.
The corresponding dots of location s and its kNN in the
embedding view will be highlighted with red color. The
kNN view shows the human traffic data and similarity
changes over time accordingly. Besides, when the analyst
selects a set of locations, the matrix view represents the
time-varying relationship between them.

• Filtering We support filtering according to the intra-
distance of kNN and the fractional anisotropy respec-
tively. The analyst can hide less important locations and
explore the distribution of interesting locations.

• Configuration In the configuration panel, the analyst can
modulate the parameters such as the time to explore
the dynamic change. The map view and the embedding
view show the features of representation at different
time interval. The previous selected locations will be
highlighted with red.
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VI. CASE STUDY

All experiments are performed on a PC equipped with a
3.4 GHz Intel Core i7-4770 CPU and 32 GB main mem-
ory. We store the trajectory data and traffic flow data in a
MySQL database. We use gensim toolbox [27] to generate
the location2vec representation, which takes 406.3 seconds on
the dataset (6513 locations, 655,677 trajectories). To support
the comprehensive study of region function, the input of
our visualization system includes several parts: the trajectory
data, the location2vec representation of each location and the
features (e.g., intra-distance of kNN and fractional anisotropy).

A. Overview
First, we explore the overview pattern of vectorized repre-

sentations in the embedding space (the top row in Figure 8)
(T1). We select a region (Figure 8(a-b)) in the map view, and
find that those the locations in this region are grouped into a
cluster in the embedding view. It indicates that the embedding
space retains the geographical similarity. We also notice that
locations on the island (Figure 8(c)) fall into small clusters,
which are far away from the other locations in the embedding
view. It is reasonable that these areas have little connection
with the other locations. Therefore, the representation also
learns the location usage from mobility data (T2). Next,
we study the mutual influence between urban locations and
mobility behavior (see Figure 7) (T2). We filter locations
whose intra-distance of kNN is smaller than 2 and select a
location (ID: 27063) on a provincial expressway in the re-
maining locations. The length of the compass indicates a large
fractional anisotropy of this location. The contextual trajectory
also verifies that there is large motion flow along the road.
Subsequently, we would like to research the interconnections
between the location (ID: 27063) and its kNN. In the matrix
view, the flow volume increases in day time. The similarity
among locations increases from 5:00 AM to 10:00 AM (see
Figure 7(e)). We can find the reason from the trajectory of the
locations on the road: there is a huge transportation flow in
the day time.

(a) (b) (c)

A

B C

A B

C

Fig. 8. Closer locations in geographic space have larger similarity with each
other. Region A and B are grouped into two clusters in the embedding view.
Locations (region C) on the island fall into small clusters.

(a) 0.9<FA<1

(b) 0<FA<0.5

University

Downtown A

Expressway 

Avenue C

Avenue B

Avenue A

Downtown B

(c)

(d)

Low Volume

High Volume

Low Volume

High Volume

Fig. 9. (a) The locations that are distributed along the backbone tend to have
large fractional anisotropic. (b) The locations lying around the downtown
and university have small fractional anisotropy. (c) The similar locations are
distributed around the selected location (business center) in downtown. The
trajectory indicates that the human motion in business center contains all
directions. (d) On the avenue connecting two districts, the similar locations
with large fractional anisotropy are distributed along the road. The trajectory
is highly directed, coinciding with the direction of the road.
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Fig. 10. (a) The locations at the southwest of the downtown are grouped into a cluster in the embedding view. Locations with large intra-distance of kNN
contain railway and railway textual description. (b) The distribution of locations in kNN of location 22567 varies over time. (c) Locations of railway generate
one cluster at 11:00 AM. However, they spread out all over the entire view at 5:00 AM in the embedding view. (d) The similarity and flow volume between
locations decrease at 5:00 AM and increase at 11:00 AM. (e) The trajectory passing through the locations at different time interval illustrates different patterns.

B. The Representation in Downtown and Traffic Route

One main focus of urban computing is the location func-
tionality [28]. Location functionality is not only designed
by urban planners, but also influenced by urban geolife,
such as traveling, shopping, and commuting. Understanding
the location functionality is a fundamental topic in urban
computing [5].

We study the locations in downtown and backbone. As
shown in Figure 9 (a), we first perform filtering to the
locations. The map view shows locations whose fractional
anisotropy is larger than 0.9 (T1). We denote three avenues
and one expressway in Figure 9(a). Along the avenues, the
locations have large anisotropy and obvious identical orien-
tation. It indicates the human mobility along the roads. The
locations along the same avenue are similar to each other,
because they provide similar functionality in transportation.
We then study the locations whose fractional anisotropy is
within [0,0.5] (Figure 9 (b)). These locations lie around the
downtown and the university. Therefore, locations on traffic
route tend to have larger fractional anisotropy than downtown.

To enable situation-aware understanding of urban locations,
we study the functionality by leveraging the distribution of
kNN and the trajectory (T2). As shown in Figure 9, we select
a location whose functionality description is business center.
Its fractional anisotropy value is small and the orientations
of nearby locations are diverse. It indicates that the human
motion in this region contains all directions. In contrast,
when considering a location on a traffic route, we notice that
the k-nearest neighbors of the location with large fractional
anisotropy distribute along the road. The contextual trajectory
of the locations illustrates different patterns. In the business
area, the trajectory contains motion of diverse directions. Be-
side the road, the trajectories are highly directed and coincide

with the direction of the road. In this case, we can conclude
that the location2vec representation is capable to reveal the
functionality of locations.

C. The Representation Evolution of Train Route

In this case, we explore how the location2vec representation
(e.g. locations vector and k-nearest neighbors) of the railway
station varies over time. We first select a cluster in the em-
bedding view (Figure 10(a) upper) (T1). The map view shows
that these locations are distributed at the southwest of the
downtown where a railway station is located at. This railway
station serves high-speed bullet trains, while the other one at
downtown serves normal trains. Then we filter out locations,
whose intra-distance of kNN is less than 10 kilometers, in
configuration panel. We find that the remaining locations’
textual descriptions consist of railway and railway station
(Figure 10(a) lower). We select a specific location (ID:22567)
whose textual description includes railway stations and study
the distribution of its neighbors N20(25567, t) using the kNN
view (T2). When we adjust the time slider, we find that the
distribution of similar location varies along time. At 5:00
AM, locations in N20(25567, 5) hold together around the
center location (Figure 10(b)). At 11:00 AM, its neighbors,
N20(25567, 11), form into a straight line (Figure 10(b)).

To analyze dynamic representations of locations on railway
line, we brush the neighbors of location 22567 (T3) at 11:00
AM in the map view. We focus on the positions of these
locations at different time interval in the embedding view. We
find that these locations generate one or two clusters during
10:00 AM to 9:00 PM. However, they spread out all over the
entire view at night (see Figure 10(c)). In the matrix view,
the similarity and flow volume between locations decrease
at night and increase at daytime (Figure 10(d)). Besides,
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the flow volume view shows that location 22567 has large
flow volume from 10:00 AM to 6:00 PM. After verifying
road network information, the trajectory on the map and the
textual description of locations, we notice that similar locations
distribute along railway line (Figure 10(d)). The contextual
trajectories indicate that a large amount of persons travel
through this region by train during the day. The reason is that
there are few persons traveling by rail at night. The location
provides services for its neighborhood at night. Massive crowd
travels through this location by train at daytime. The locations
along the railway line serve as a traffic route. Our location2vec
representation captures the location functionality based on the
evolution in human mobility.

D. Discussion
Through the case studies, we demonstrate the efficiency of

our location2vec representation which enables situation-aware
exploration and analysis of urban locations.

Capability of generalization Although we showcase the
representation with mobile phone trajectory data, the loca-
tion2vec representation can be easily applied to other move-
ment data such as taxi trajectories. Both taxi and mobile phone
trajectories can be defined as a set of records. Each record
contains a position and a time stamp. Treating the records
as words, and trajectories as documents, the location2vec
representation provides a general model to encode location
and mobility information into a compact vector.

Comparison to aggregation-based approaches Our lo-
cation2vec representation preserves the spatial and temporal
information and the mutual influence between urban locations
and mobility behavior. First, compared to utilizing aggregated
trajectories only, our representation supports the situation-
aware analysis. We analyze urban locations in its context
which provides a new perspective of urban mobility analysis
(See Figure 1). Second, the vectorized representation is poten-
tial in machine learning and data mining models. For instance,
an overview of the spatial-temporal pattern of locations can
be provided in the vector space of locations. More efficient
exploring operations, including querying, comparing, and clus-
tering, are supported by this representation. The analyst can
reason the inconsistency between the geographical space and
vector space of close locations.

Limitations We see some limitations of our location2vec
representation. First, it is time-consuming to project high-
dimensional representation into 2D panel and support inter-
activity visualization when the number of locations increases.
Currently, we pre-compute the embedding with LargeVis [24].
Second, the functionality description of a location is not
taken into the location vector construction. We would like to
integrate the functionality description into the location vector
to support more semantic-rich analysis. At last, we generate
the representation from the trajectory data during seven days.
We are also interested in investigating large scale evolution
with data spanning longer time.

VII. CONCLUSION

This paper proposes the situation-aware location2vec rep-
resentation to support the analysis of urban mobility and

locations. In case studies, we showcase the consequent dis-
coveries, e.g. railway line, highway, downtown center, and
their time-varying patterns. These discoveries provide a way
to understand the functionality of locations. In the future,
we would like to take semantic information (e.g., check-in
data, point of interest data) into consideration. The semantic
information provides detailed description of the purpose of
mobility behavior. We are going to apply our method on other
urban data (e.g., GPS trajectory) to study the representation
of location in urban transportation.
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